TY - JOUR AU1 - Chen, Pingyan AU2 - Sung, Soo AB - Let r ≥ 1 $r\geq1$ , 1 ≤ p < 2 $1\leq p<2$ , and α , β > 0 $\alpha, \beta>0$ with 1 / α + 1 / β = 1 / p $1/\alpha+1/\beta=1/p$ . Let { a n k , 1 ≤ k ≤ n , n ≥ 1 } $\{a_{nk}, 1\leq k\leq n,n\geq1\}$ be an array of constants satisfying sup n ≥ 1 n − 1 ∑ k = 1 n | a n k | α < ∞ $\sup_{n\geq1}n^{-1}\sum^{n}_{k=1}|a_{nk}|^{\alpha}<\infty$ , and let { X n , n ≥ 1 } $\{ X_{n},n\geq1\}$ be a sequence of identically distributed ρ ∗ $\rho^{*}$ -mixing random variables. For each of the three cases α < r p $\alpha< rp$ , α = r p $\alpha=rp$ , and α > r p $\alpha>rp$ , we provide moment conditions under which ∑ n = 1 ∞ n r − 2 P { max 1 ≤ m ≤ n | ∑ k = 1 m a n k X k | > ε n 1 / p } < ∞ , ∀ ε > 0 . $$\sum^{\infty}_{n=1}n^{r-2}P \Biggl\{ \max_{1\leq m\leq n} \Biggl\vert \sum^{m}_{k=1}a_{nk}X_{k} \Biggr\vert >\varepsilon n^{1/p} \Biggr\} < \infty,\quad \forall \varepsilon>0. $$ We also provide moment conditions under which ∑ n = 1 ∞ n r − 2 − q / p E ( max 1 ≤ m ≤ n | ∑ k = 1 m a n k X k | − ε n 1 / p ) + q < ∞ , ∀ ε > 0 , $$\sum^{\infty}_{n=1}n^{r-2-q/p} E \Biggl( \max_{1\leq m\leq n} \Biggl\vert \sum^{m}_{k=1}a_{nk}X_{k} \Biggr\vert -\varepsilon n^{1/p} \Biggr)_{+}^{q}< \infty,\quad \forall\varepsilon>0, $$ where q > 0 $q>0$ . Our results improve and generalize those of Sung (Discrete Dyn. Nat. Soc. 2010:630608, 2010) and Wu et al. (Stat. Probab. Lett. 127:55–66, 2017). TI - On complete convergence and complete moment convergence for weighted sums of ρ ∗ $\rho^{*}$ -mixing random variables JF - Journal of Inequalities and Applications DO - 10.1186/s13660-018-1710-2 DA - 2018-06-01 UR - https://www.deepdyve.com/lp/springer-journals/on-complete-convergence-and-complete-moment-convergence-for-weighted-3N8tm29bSO SP - 1 EP - 16 VL - 2018 IS - 1 DP - DeepDyve ER -