TY - JOUR AU1 - Kaur, Jaspreet AU2 - Goyal, Meenu AB - In the given note, we present the generalization of Bézier curves depending upon the parameter α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha $$\end{document}, named as α-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha -$$\end{document}Bézier curves. Also, we introduce tensor product α-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha -$$\end{document}Bézier surfaces. We study some properties and degree elevation of these curves and surfaces. In the end, we show that the parameter provides us the flexibility to modify the curves as well as surfaces. To present it, we give some numerical examples with the help of Matlab. TI - On α-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -$$\end{document}Bézier curves and surfaces JF - Bollettino dell Unione Matematica Italiana DO - 10.1007/s40574-022-00341-9 DA - 2023-09-01 UR - https://www.deepdyve.com/lp/springer-journals/on-documentclass-12pt-minimal-usepackage-amsmath-usepackage-wasysym-Ax0hOqC4OY SP - 459 EP - 470 VL - 16 IS - 3 DP - DeepDyve ER -