TY - JOUR AU1 - Morecraft, Robert J. AU2 - Geula, Changiz AU3 - Mesulam, M.-Marsel AB - Abstract • The spatial distribution of directed attention is coordinated by a large-scale neural network. The three principal cortical components of this network are located in the region of the frontal eye fields, posterior parietal cortex, and the cingulate cortex. We injected a retrogradely transported fluorescent dye into the frontal eye fields and another into the posterior parietal cortex of the monkey brain. Large numbers of neurons in the cingulate cortex were retrogradely labeled with each of the two fluorescent dyes. The two types of retrogradely labeled neurons were extensively intermingled, but neurons labeled with both tracers constituted less than 1% of retrogradely labeled cingulate neurons. Other cortical areas that contained retrograde neuronal labeling included the premotor, lateral prefrontal, orbitofrontal, opercular, posterior parietal, lateral temporal, inferior temporal, parahippocampal, and insular regions. These areas contained neurons labeled with each of the two dyes but virtually no neurons labeled with both. In the thalamus, retrogradely labeled nuclei failed to display evidence of double labeling. The overlap between the two populations of retrogradely labeled neurons was far more extensive at the cortical than at the thalamic level. These observations show that cortical and thalamic projections to the frontal eye fields and posterior parietal cortex do not represent axonal collaterals of single neurons but originate from two distinct and partially overlapping populations of neurons. References 1. Mesulam M-M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory . Ann Neurol . 1990;28:597-613.Crossref 2. Mesulam M-M. A cortical network for directed attention and unilateral neglect . Ann Neurol . 1981;10:309-325.Crossref 3. Daffner KR, Ahern GL, Weintraub S, Mesulam M-M. Dissociated neglect behavior following sequential strokes in the right hemisphere . Ann Neurol . 1990;28:97-101.Crossref 4. Liu CT, Bolton TK, Price BH, Weintraub S. Dissociated perceptualsensory and exploratory-motor neglect . J Neurol Neurosurg Psychiatry . 1992;55:701-706.Crossref 5. Bisiach E, Germiniani G, Berti A, Rusconi ML. Perceptual and premotor factors of unilateral neglect . Neurology . 1990;40:1278-1781.Crossref 6. Coslett HB, Bowers D, Fitzpatrick E, Haws B, Heilman KM. Directional hypokinesia and hemispatial inattention in neglect . Brain . 1990;113:475-486.Crossref 7. Binder J, Marshall R, Lazar R, Benjamin J, Mohr JP. Distinct syndromes of hemineglect . Arch Neurol . 1992;49:1187-1194.Crossref 8. Heilman KM, Valenstein E. Frontal lobe neglect in man . Neurology . 1972;22:660-664.Crossref 9. Kennard MA. Alterations in response to visual stimuli following lesions of frontal lobe in monkeys . Arch Neurol Psychiatry . 1939;41:1153-1165.Crossref 10. Welch K, Stuteville P. Experimental production of unilateral neglect in monkeys . Brain . 1958;81:341-347.Crossref 11. Brown D, Chambers RA. The parietal lobe and behavior . Res Nerv Ment Dis . 1958;36:35-117. 12. Goldberg ME, Segraves MA. Visuospation and motor attention in the monkey . Neuropsychologia . 1987;25:107-118.Crossref 13. Deuel RK, Collins RC. Recovery from unilateral neglect . Exp Neurol . 1983;81:733-748.Crossref 14. Watson RT, Heilman KM, Cauthen JC, King FA. Neglect after cingulotomy . Neurology . 1973;23:1003-1007.Crossref 15. Pandya DN, Kuypers HGJM. Cortico-cortical connections in the rhesus monkey . Brain Res . 1969;13:13-36.Crossref 16. Jones EG, Powell TPS. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey . Brain . 1970;93:793-820.Crossref 17. Goldman PS, Nauta WJH. Columnar distribution of cortico-cortical fibers in frontal association, limbic and motor cortex of the developing rhesus monkey . Brain Res . 1977;122:393-413.Crossref 18. Chavis DA, Pandya DN. Further observations on corticofrontal connections in the rhesus monkey . Brain Res . 1976;117:369-386.Crossref 19. Mesulam M-M, Van Hoesen GW, Pandya DN, Geschwind N. Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry . Brain Res . 1977;136:393-414.Crossref 20. Baleydier C, Mauguiere F. The duality of the cingulate gyrus in the rhesus monkey: neuroanatomical study and functional hypotheses . Brain . 1980;103:525-554.Crossref 21. Barbas H, Mesulam M-M. Organization of afferent input to subdivisions of area 8 in the rhesus monkey . J Comp Neurol . 1981;200:407-431.Crossref 22. Schwartz ML, Goldman-Rakic PS. Single cortical neurons have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates . Nature . 1982;299:154-156.Crossref 23. Anderson RA, Asanuma C, Cowan WM. Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: a study using retrogradely transported fluorescent dyes . J Comp Neurol . 1985; 232:443-455.Crossref 24. Barbas H, Mesulam M-M. Cortical afferent input to the principalis region of the rhesus monkey . Neuroscience . 1985;15:619-637.Crossref 25. Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey . J Comp Neurol . 1984;228: 105-116.Crossref 26. Huerta MF, Krubitzer LA, Kaas JH. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys, II: cortical connections . J Comp Neurol . 1987;265:332-361.Crossref 27. Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey, II: cortical afferents . J Comp Neurol . 1987;262:271-289.Crossref 28. Cavada C, Goldman-Rakic PS. Posterior parietal cortex in rhesus monkey, I: parcellation of areas based on distinctive limbic and sensory corticocortical connections . J Comp Neurol . 1989;287:393-421.Crossref 29. Huerta MF, Kaas JH. Supplementary eye field as defined by intracortical microstimulation: connections in macaques . J Comp Neurol . 1990;293: 299-330.Crossref 30. Neal JW, Pearson RCA, Powell TPS. The ipsilateral corticocortical connections of area 7 with the frontal lobe in the monkey . Brain Res . 1990; 509:31-40.Crossref 31. Baizer JS, Ungerleider LG, Desimone R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques . J Neurosci . 1991;11:168-190. 32. Baleydier C, Mauguiere F. Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey . Exp Brain Res . 1987;66: 385-393.Crossref 33. Asanuma C, Anderson RA, Cowan WM. The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus . J Comp Neurol . 1985;241:357-381.Crossref 34. Rosene DL, Roy NJ, Davis BJ. A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact . J Histochem Cytochem . 1986;34:1301-1315.Crossref 35. Bonin GV, Bailey P. The Neocortex of the Macaca mulatta . Champaign, Ill: University of Illinois Press; 1947. 36. Barbas H, Pandya DN. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey . J Comp Neurol . 1987; 256:211-228.Crossref 37. Barbas H, Pandya DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey . J Comp Neurol . 1989;286:353-375.Crossref 38. Olszewski J. The Thalamus of the Macaca mulatta . New York, NY: S Karger AG; 1952. 39. Burton H, Robinson CJ. Organization of the SII parietal cortex: multiple somatic sensory representations within and near the second somatosensory area of cynomolgus monkeys . In: Woolsey CN, ed. Multiple Cortical Sensory Areas . Clifton, NJ: Humana Press; 1981:67-119. 40. Woolsey CN. 'Second' somatic receiving areas in the cerebral cortex of cat, dog and monkey . Fed Proc . 1943;2:55-56. 41. Astruc J. Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta . Brain Res . 1971;33:241-256.Crossref 42. Tobias TJ. Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey . Brain Res . 1975;83:191-212.Crossref 43. Kunzle H, Akert K. Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis: a reinvestigation using the autoradiographic technique . J Comp Neurol . 1977;173:147-164.Crossref 44. Kasdon DL, Jacobson S. The thalamic afferents to the inferior parietal lobule of the rhesus monkey . J Comp Neurol . 1978;177:685-706.Crossref 45. Huerta MF, Krubitzer LA, Kaas JH. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys, I: subcortical connections . J Comp Neurol . 1986;253:415-439.Crossref 46. Barbas H, Haswell-Henion TH, Dermon CR. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey . J Comp Neurol . 1991; 313:65-94.Crossref 47. Selemon LD, Goldman-Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior . J Neurosci . 1988;8:4049-4068. TI - Architecture of Connectivity Within a Cingulo-Fronto-Parietal Neurocognitive Network for Directed Attention JF - Archives of Neurology DO - 10.1001/archneur.1993.00540030045013 DA - 1993-03-01 UR - https://www.deepdyve.com/lp/american-medical-association/architecture-of-connectivity-within-a-cingulo-fronto-parietal-BwVW9wUOJ2 SP - 279 EP - 284 VL - 50 IS - 3 DP - DeepDyve ER -