TY - JOUR AU1 - Barwick, S. AU2 - Hui, Alice AU3 - Jackson, Wen-Ai AU4 - Schillewaert, Jeroen AB - Let $${\mathcal {H}}$$ H be a non-empty set of hyperplanes in $$\text {PG}(4,q)$$ PG ( 4 , q ) , q even, such that every point of $$\text {PG}(4,q)$$ PG ( 4 , q ) lies in either 0, $$\frac{1}{2}q^3$$ 1 2 q 3 or $$\frac{1}{2}(q^3+q^2)$$ 1 2 ( q 3 + q 2 ) hyperplanes of $${\mathcal {H}}$$ H , and every plane of $$\text {PG}(4,q)$$ PG ( 4 , q ) lies in 0 or at least $$\frac{1}{2}q$$ 1 2 q hyperplanes of $${\mathcal {H}}$$ H . Then $${\mathcal {H}}$$ H is the set of all hyperplanes which meet a given non-singular quadric Q(4, q) in a hyperbolic quadric. TI - Characterising hyperbolic hyperplanes of a non-singular quadric in $$\text {PG}(4,q)$$ PG ( 4 , q ) JF - Designs, Codes and Cryptography DO - 10.1007/s10623-019-00669-y DA - 2019-08-01 UR - https://www.deepdyve.com/lp/springer-journals/characterising-hyperbolic-hyperplanes-of-a-non-singular-quadric-in-X5ZoOOSvU0 SP - 33 EP - 39 VL - 88 IS - 1 DP - DeepDyve ER -