TY - JOUR AU1 - Wang, Y.-C. AU2 - Lin, S.-H. AU3 - Jang, D. AB - A numerical analysis of the unsteady flows in conical microdiffusers appropriate for valveless micropump applications is performed. The rectification efficiency of the diffuser valve is calculated directly as a function of geometric and operational parameters, including diffuser angle, diffuser slenderness, sizes of actuation chamber and inlet/outlet port, actuation frequency, and amplitude of actuation pressure. The computational results show that the diffuser with diverging angle of 10° and slenderness of 7.5 has the best rectification performance. For large actuation pressure amplitude, the optimal rectification efficiency and its corresponding Roshko number are relatively high. At the optimal Roshko number, the flow impedance is found to be dominated by fluid inertia. Sizes of the pump chamber and inlet/outlet port are shown to have a prominent effect on valve performance. Small actuation chamber or small inlet/outlet port can significantly deteriorate the valving performance of the diffuser. Microdiffuser, Micropump, Rectification efficiency, Roshko number References 1. Stemme E. and Stemme G. , “A Valveless Diffuser/Nozzle Fluid Pump,” Sensors and Actuators A , 39 , pp. 159 – 167 ( 1993 ). Google Scholar Crossref Search ADS WorldCat 2. Olsson A. , Stemme G. and Stemme E. , “A Valve-Less Planar Fluid Pump with two Pump Chambers,” Sensors and Actuators A , 46 – 47 , pp. 549 – 556 ( 1995 ). OpenURL Placeholder Text WorldCat 3. Olsson A. , Stemme G. and Stemme E. , “Diffuser-Element Design Investigation for Valve-Less Pumps,” Sensors and Actuators A , 57 , pp. 137 – 143 ( 1996 ). Google Scholar Crossref Search ADS WorldCat 4. Gerlach T. , “Microdiffusers as Dynamic Passive Valves for Mcropump Applications,” Sensors and Actuators A , 69 , pp. 181 – 191 ( 1998 ). Google Scholar Crossref Search ADS WorldCat 5. Jiang X. N. , Zhou Z. Y. , Huang X. Y. , Li Y. , Yang Y. and Liu C. Y. , “Micronozzle/Diffuser Flow and its Application in Micro Valveless Pumps,” Sensors and Ac-tuators A , 70 , pp. 81 – 87 ( 1998 ). Google Scholar Crossref Search ADS WorldCat 6. Olsson A. , Stemme G. and Stemme E. , “Numerical and Experimental Studies of Flat-Walled Diffuser Elements for Valve-Less Micropumps,” Sensors and Actuators A , 84 , pp. 165 – 175 ( 2000 ). Google Scholar Crossref Search ADS WorldCat 7. Cui Q. , Liu C. and Zha X. F. , “Study on a Piezoelectric Micropump for the Controlled Drug Delivery System,” Microfluidics and Nanofluidics , 3 , pp. 377 – 390 ( 2007 ). Google Scholar Crossref Search ADS WorldCat 8. Olsson A. , Enoksson P. , Stemme G. and Stemme E. , “A Valve-Less Planar Pump Isotropically Etched in Silicon,” Journal of Micromechanics and Microengneering , 6 , pp. 87 – 91 ( 1996 ). Google Scholar Crossref Search ADS WorldCat 9. Olsson A. , Enoksson P. , Stemme G. and Stemme E. , “Micromachined Flat-Walled Valveless Diffuser Pumps,” Journal of Micromechanics and Microengneering , 6 , pp. 161 – 166 ( 1997 ). OpenURL Placeholder Text WorldCat 10. Gerlach T. and Wurmus H. , “Working Principle and Performance of the Dynamic Micropump,” Sensors and Actuators A , 50 , pp. 135 – 140 ( 1995 ). Google Scholar Crossref Search ADS WorldCat 11. Lee Y.-FL , Kang T. G. and Cho Y.-FL , “Characterization of Bi-Directionally Oscillating Dynamic Flow and Frequency-Dependent Rectification Performance of Microdiffusers,” Proceeding of IEEE Micro Electro Mechanical Systems , Miyazaki , Japan , pp. 403 – 408 ( 2000 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 12. Kim J. and Xu X. , “Laser-Based Fabrication of Polymer Micropump,” Journal of Microlithography Microfabrication and Microsystems , 3 , pp. 152 – 158 ( 2004 ). OpenURL Placeholder Text WorldCat 13. Sun C.-L. and Huang K. H. , “Numerical Characterization of the Flow Rectification of Dynamic Microdiffusers,” Journal of Micromechanics and Microengneering , 16 , pp. 1331 – 1339 ( 2006 ). Google Scholar Crossref Search ADS WorldCat 14. Wang C.-T. , Leu T.-S. and Sun J.-M. , “Unsteady Analysis of Mcrovalves with No Moving Parts,” Journal of Mechanics , 23 , pp. 9 – 14 ( 2007 ). Google Scholar Crossref Search ADS WorldCat 15. Peng X. F. , Peterson G. P. and Wang B. X. , “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels,” Experimental Heat Transfer , 7 , pp. 249 – 264 ( 1994 ). Google Scholar Crossref Search ADS WorldCat 16. Mala G. M. and Li D. , “Flow Characteristics of Water in Microtubes,” International Journal of Heat and Fluid Flow , 20 , pp. 142 – 148 ( 1999 ). Google Scholar Crossref Search ADS WorldCat 17. Hetsroni G. , Mosyak A. , Pogrebnyak E. and Yarin L. P. , “Fluid Flow in Micro-Channels,” International Journal of Heat and Mass Transfer , 48 , pp. 1982 – 1998 ( 2005 ). Google Scholar Crossref Search ADS WorldCat 18. Kohl M. J. , Abdel-Khahk S. I. , Jeter S. M. and Sadowski D. L. , “An Experimental Investigation of MicroChannel Flow with Internal Pressure Measurements,” International Journal of Heat and Mass Transfer , 48 , pp. 1518 – 1533 ( 2005 ). Google Scholar Crossref Search ADS WorldCat 19. Yamahata C , Lotto C , Al-Assaf E. and Gijs M. A. M. , “A PMMA Valveless Micropump Using Electromagnetic Actuation,” Microfluidics and Nanofluidics , 1 , pp. 197 – 207 ( 2005 ). Google Scholar Crossref Search ADS WorldCat 20. Xia F. , Tadigadapa S. and Zhang Q. M. , “Electroactive Polymer Based Microfluidic Pump,” Sensors and Actuators A , 125 , pp. 346 – 352 ( 2006 ). Google Scholar Crossref Search ADS WorldCat This content is only available as a PDF. Author notes * Associate Professor, corresponding author ** Master © The Society of Theoretical and Applied Mechanics, R.O.C. 2010 The Society of Theoretical and Applied Mechanics, R.O.C. © The Society of Theoretical and Applied Mechanics, R.O.C. 2010 TI - Unsteady Analysis of the Flow Rectification Performance of Conical Microdiffuser Valves for Valveless Micropump Applications JF - Journal of Mechanics DO - 10.1017/s1727719100003853 DA - 2010-09-01 UR - https://www.deepdyve.com/lp/oxford-university-press/unsteady-analysis-of-the-flow-rectification-performance-of-conical-lyXfHhp0P3 SP - 299 EP - 307 VL - 26 IS - 3 DP - DeepDyve ER -