Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Roni, R. Timm (2016)
Lewis River hydroelectric project (FERC Nos. 2111, 2213, 2071 & 935) new information regarding fish transport into Lake Merwin and Yale Lake ? June 2016
M. W. Smith (1938)
A preliminary account of the fish populations in certain Nova Scotian lakes, 67
J. T. Thorson, M. D. Scheuerell, E. R. Buhle, T. Copeland (2014)
Spatial variation buffers temporal fluctuations in early juvenile survival for an endangered Pacific salmon, 83
D. J. Isaak, J. M. Ver Hoef, E. E. Peterson, D. L. Horan, D. E. Nagel (2017)
Scalable population estimates using spatial?stream?network (SSN) models, fish density surveys, and national geospatial database frameworks for streams, 74
S. Koljonen, A. Huusko, A. Mäki‐Petäys, P. Louhi, T. Muotka (2013)
Assessing habitat suitability for juvenile Atlantic Salmon in relation to in?stream restoration and discharge variability, 21
P. Roni, A. Fayram (2000)
Estimating winter salmonid abundance in small western Washington streams: A comparison of three techniques, 20
R. F. Raleigh, W. J. Miller, P. C. Nelson (1986)
Habitat suitability index models and instream flow suitability curves: Chinook Salmon
L. Mobrand, L. Lestelle (1997)
Application of the ecosystem diagnosis and treatment method to the Grande Ronde model watershed project
J. A. Sweka, G. Mackey (2010)
A functional relationship between watershed size and Atlantic Salmon parr density, 1
W. W. Macfarlane, C. M. McGinty, B. G. Laub, S. J. Gifford (2017a)
High?resolution riparian vegetation mapping to prioritize conservation and restoration in an impaired desert river, 25
E. J. Cooper, A. P. O'Dowd, J. J. Graham, D. W. Mierau, W. J. Trush, R. Taylor (2020)
Salmonid habitat and population capacity estimates for steelhead trout and Chinook Salmon upstream of Scott Dam in the Eel River, California, 94
J. C. Jorgensen, C. Nicol, C. Fogel, T. J. Beechie (2021)
Identifying the potential of anadromous salmonid habitat restoration with life cycle models, 16
S. P. Cramer, N. K. Ackerman (2009)
Pacific salmon environmental and life history models: Advancing science for sustainable salmon in the future
D. C. Erman (1986)
Long?term structure of fish populations in Sagehen Creek, California, 115
(2022)
Regional database and modeled stream temperatures [data set]
M. Gard (2006)
Modeling changes in salmon spawning and rearing habitat associated with river channel restoration, 4
J. M. Wheaton, N. Bouwes, P. Mchugh, C. Saunders, S. Bangen, P. Bailey, M. Nahorniak, E. Wall, C. Jordan (2018)
Upscaling site?scale ecohydraulic models to inform salmonid population?level life cycle modeling and restoration actions ? lessons from the Columbia River basin, 43
T. Beechie, E. Beamer, L. Wasserman (1994)
Estimating Coho Salmon rearing habitat and smolt production losses in a large river basin, and implications for habitat restoration, 14
S. J. Theuerkauf, R. N. Lipcius (2016)
Quantitative validation of a habitat suitability index for oyster restoration, 3
M. H. Bond, T. G. Nodine, T. J. Beechie, R. W. Zabel (2018)
Estimating the benefits of widespread floodplain reconnection for Columbia River Chinook Salmon, 76
J. M. Ver Hoef, E. Peterson, D. Theobald (2006)
Spatial statistical models that use flow and stream distance, 13
R. L. Vadas, D. J. Orth (2001)
Formulation of habitat suitability models for stream fish guilds: Do the standard methods work?, 130
G. J. Roloff, B. J. Kernohan (1999)
Evaluating reliability of habitat suitability index models, 27
M. M. Pollock, G. R. Pess, T. J. Beechie, D. R. Montgomery (2004)
The importance of beaver ponds to Coho Salmon production in the Stillaguamish River basin, Washington, USA, 24
J. S. Schwartz (2016)
Use of ecohydraulic?based mesohabitat classification and fish species traits for stream restoration design, 8
P. Roni, P. J. Anders, T. J. Beechie, D. J. Kaplowe (2018)
Review of tools for identifying, planning, and implementing habitat restoration for Pacific salmon and steelhead, 38
K. E. See, M. W. Ackerman, R. A. Carmichael, S. L. Hoffmann, C. Beasley (2021)
Estimating carrying capacity for juvenile salmon using quantile random forest models, 12
K. K. Bartz, K. M. Lagueux, M. D. Scheuerell, T. Beechie, A. D. Haas, M. H. Ruckelshaus (2006)
Translating restoration scenarios into habitat conditions: An initial step in evaluating recovery strategies for Chinook Salmon (Oncorhynchus tshawytscha), 63
A. M. FitzGerald, D. A. Boughton, J. Fuller, S. N. John, B. T. Martin, L. R. Harrison, N. J. Mantua (2022)
Physical and biological constraints on the capacity for life?history expression of anadromous salmonids: An Eel River, California, case study, 79
G. M. Kondolf, E. W. Larsen, J. G. Williams (2000)
Measuring and modeling the hydraulic environment for assessing instream flows, 20
S. F. Railsback (2016)
Why it is time to put PHABSIM out to pasture, 41
C. E. Wall, N. Bouwes, J. M. Wheaton, W. C. Saunders, S. N. Bennett (2015)
Net rate of energy intake predicts reach?level steelhead (Oncorhynchus mykiss) densities in diverse basins from a large monitoring program, 73
K. R. Allen (1951)
The Horokiwi stream: A study of a trout population, 10
J. R. Bellmore, C. V. Baxter, K. Martens, P. J. Connolly (2013)
The floodplain food web mosaic: A study of its importance to salmon and steelhead with implications for their recovery, 23
J. Mocq, A. St‐Hilaire, R. A. Cunjak (2018)
Do habitat measurements in the vicinity of Atlantic Salmon (Salmo salar) parr matter?, 25
K. D. Bovee (1982)
A guide to stream habitat analysis using the instream flow incremental methodology
J. M. Ver Hoef, E. E. Peterson (2010)
A moving average approach for spatial statistical models of stream networks, 105
R. F. Thurow (1994)
Underwater methods for study of salmonids in the Intermountain West (General Technical Report INT?GTR?307)
R. E. Bilby, P. A. Bisson (1987)
Emigration and production of hatchery Coho Salmon (Oncorhynchus kisutch) stocked in streams draining an old?growth and clear?cut watershed, 44
I. Hong, J. S. Kim, K. H. Kim, H. S. Shin, H. S. Jeon (2018)
Analysis of physical habitat change for target fish induced by extended floodplain, 85
B. A. Staton, C. Justice, S. White, E. R. Sedell, L. A. Burns, M. J. Kaylor (2022)
Accounting for uncertainty when estimating drivers of imperfect detection: An integrated approach illustrated with snorkel surveys for riverine fishes, 249
G. H. Reeves, F. H. Everest, T. E. Nickels (1989)
Identification of physical habitats limiting the production of Coho Salmon in western Oregon and Washington
T. Beechie, H. Imaki (2014)
Predicting natural channel patterns based on landscape and geomorphic controls in the Columbia River basin, USA, 50
D. R. Embody (1940)
A method of estimating the number of fish in a given section of a stream, 69
W. E. Ricker, R. E. Foerster (1948)
Computation of fish production, 11
N. J. Milner, J. M. Elliott, J. D. Armstrong, R. Gardiner, J. S. Welton, M. Ladle (2003)
The natural control of salmon and trout populations in streams, 62
W. E. Ricker (1954)
Stock and recruitment, 11
R. J. H. Beverton, S. J. Holt (1957)
On the dynamics of exploited fish populations
T. E. Nickelson (1998)
A habitat?based assessment of Coho Salmon production potential and spawner escapement needs for Oregon coastal streams
S. M. Naman, J. S. Rosenfeld, J. R. Neuswanger, E. C. Enders, B. C. Eaton (2019)
Comparing correlative and bioenergetics?based habitat suitability models for drift?feeding fishes, 64
W. W. Macfarlane, J. M. Wheaton, N. Bouwes, M. L. Jensen, J. T. Gilbert, N. Hough‐Snee, J. A. Shivik (2017b)
Modeling the capacity of riverscapes to support beaver dams, 277
G. W. Brunner (2016)
HEC?RAS river analysis system user's manual, version 5.0
T. Beechie, H. Imaki, J. Greene, A. Wade, H. Wu, G. Pess, P. Roni, J. Kimball, J. Stanford, P. Kiffney, N. Mantua (2013)
Restoring salmon habitat for a changing climate, 29
INTRODUCTIONDespite investments of hundreds of millions of dollars annually for more than 20 years to restore freshwater habitat and maximize freshwater production of Pacific salmon Oncorhynchus spp. populations along the West Coast, we still struggle to identify restoration actions within a watershed that will address limiting factors and lead to an increase in habitat capacity and salmon survival. Numerous assessment methods have been developed to identify degraded floodplain, riparian, and instream habitat (Beechie et al. 2013; Roni et al. 2018). Although remote sensing and new analytical techniques have allowed more rapid mapping and assessment of floodplain, riparian, and riverine habitat (Beechie and Imaki 2014; Macfarlane et al. 2017a, 2017b; Bond et al. 2018), reliable methods to adequately quantify historic, current, and potential salmonid abundance at the reach, tributary, and watershed scales have proven more challenging. The scale of watershed restoration and the cost and logistical constraints of measuring fish habitat capacity, current abundance, or survival at both a reach scale and a watershed scale have hampered these efforts. Therefore, a variety of modeling approaches has been developed in recent years to estimate these metrics for salmonids to assist with planning and evaluating habitat restoration.Estimating habitat capacity—the maximum number of fish that a given length or
Transactions of the American Fisheries Society – Oxford University Press
Published: Mar 1, 2023
Keywords: capacity; Chinook Salmon; ecology; habitat; management; riparian and stream
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.