References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
<?xpp foot;n1;0?><?xpp foot;n2;0?>Modified gravity theories have received increased attention lately due to combined motivation coming from high-energy physics, cosmology, and astrophysics. Among numerous alternatives to Einstein’s theory of gravity, theories that include higher-order curvature invariants, and specifically the particular class of f ( R ) theories, have a long history. In the last five years there has been a new stimulus for their study, leading to a number of interesting results. Here f ( R ) theories of gravity are reviewed in an attempt to comprehensively present their most important aspects and cover the largest possible portion of the relevant literature. All known formalisms are presented—metric, Palatini, and metric affine—and the following topics are discussed: motivation; actions, field equations, and theoretical aspects; equivalence with other theories; cosmological aspects and constraints; viability criteria; and astrophysical applications.
Reviews of Modern Physics – American Physical Society (APS)
Published: Jan 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.