Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Shikata, E. Shikata, F. Hamzei, V. Glauche, R. Knab, C. Dettmers, C. Weiller, C. Büchel (2001)
Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study.Journal of neurophysiology, 85 3
Elisa Shikata, Yuji Tanaka, Hiroyuki Nakamura, Masato Taira, Hideo Sakata (1996)
Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli.Neuroreport, 7 14
V. Gallese, A. Murata, M. Kaseda, Nanako Niki, H. Sakata (1994)
Deficit of hand preshaping after muscimol injection in monkey parietal cortexNeuroReport, 5
R. Malach, J. Reppas, R. Benson, K. Kwong, H. Jiang, W. Kennedy, P. Ledden, T. Brady, B. Rosen, R. Tootell (1995)
Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex.Proceedings of the National Academy of Sciences of the United States of America, 92 18
G. Rizzolatti, R. Camarda, L. Fogassi, M. Gentilucci, G. Luppino, M. Matelli (1988)
Functional organization of inferior area 6 in the macaque monkeyExperimental Brain Research, 71
F. Binkofski, G. Buccino, K. Stephan, G. Rizzolatti, R. Seitz, H. Freund (1999)
A parieto-premotor network for object manipulation: evidence from neuroimagingExperimental Brain Research, 128
M. Jeannerod (1981)
Intersegmental coordination during reaching at natural visual objectsAttention and Performance
I. Faillenot, J. Decety, M. Jeannerod (1999)
Human Brain Activity Related to the Perception of Spatial Features of ObjectsNeuroImage, 10
I. Faillenot, H. Sakata, N. Costes, J. Decety, M. Jeannerod (1997)
Visual working memory for shape and 3D‐orientation: a PET studyNeuroReport, 8
Ewa Wojciulik, N. Kanwisher (1999)
The Generality of Parietal Involvement in Visual AttentionNeuron, 23
R. Miiri, M. Iba-Zizen, C. Derosier, E. Cabanis, C. Pierrot-Deseilligny, France Pierrot-Deseilligny (1996)
Location of the human posterior eye field with functional magnetic resonance imaging.Journal of Neurology, Neurosurgery & Psychiatry, 60
R. Kawashima, Eichi Naitoh, M. Matsumura, H. Itoh, S. Ono, K. Satoh, R. Gotoh, M. Koyama, Kentaro Inoue, S. Yoshioka, Hiroshi Fukuda (1996)
Topographic representation in human intraparietal sulcus of reaching and saccadeNeuroReport, 7
I. Faillenot, I. Toni, J. Decety, M. Grégoire, M. Jeannerod (1997)
Visual pathways for object-oriented action and object recognition: functional anatomy with PET.Cerebral cortex, 7 1
F. Binkofski, C. Dohle, S. Posse, K. Stephan, H. Hefter, R. Seitz, H. Freund (1998)
Human anterior intraparietal area subserves prehensionNeurology, 50
M. Matelli, R. Camarda, M. Glickstein, G. Rizzolatti (1986)
Afferent and efferent projections of the inferior area 6 in the macaque monkeyJournal of Comparative Neurology, 251
H. Sakata, M. Taira, Seiichiro Mine, A. Murata (1992)
Hand-Movement-Related Neurons of the Posterior Parietal Cortex of the Monkey: Their Role in the Visual Guidance of Hand Movements
I. Faillenot, S. Sunaert, P. Hecke, G. Orban (2001)
Orientation discrimination of objects and gratings compared: an fMRI studyEuropean Journal of Neuroscience, 13
L. Jakobson, Y. Archibald, David Carey, M. Goodale (1991)
A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxiaNeuropsychologia, 29
A. Mecklinger, Christin Gruenewald, M. Besson, M. Magnié, D. Cramon (2002)
Separable neuronal circuitries for manipulable and non-manipulable objects in working memory.Cerebral cortex, 12 11
R. Malach, I. Levy, U. Hasson (2002)
The topography of high-order human object areasTrends in Cognitive Sciences, 6
R. Oldfield (1971)
The assessment and analysis of handedness: the Edinburgh inventory.Neuropsychologia, 9 1
L. Freire, J. Mangin (2001)
Motion Correction Algorithms May Create Spurious Brain Activations in the Absence of Subject MotionNeuroImage, 14
L. Chao, Alex Martin (2000)
Representation of Manipulable Man-Made Objects in the Dorsal StreamNeuroImage, 12
(2001)
Visually-guided grasping produces
(2002)
Effector specific and non-specific activity in frontal eye fields
P. Bandettini, R. Cox (2000)
Event‐related fMRI contrast when using constant interstimulus interval: Theory and experimentMagnetic Resonance in Medicine, 43
G. Rizzolatti, Luciano Fadiga, M. Matelli, V. Bettinardi, E. Paulesu, D. Perani, F. Fazio (1996)
Localization of grasp representations in humans by PET: 1. Observation versus executionExperimental Brain Research, 111
C. Grefkes, P. Weiss, K. Zilles, G. Fink (2002)
Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and MonkeysNeuron, 35
Scott Grafton, A. Fagg, R. Woods, M. Arbib (1996)
Functional anatomy of pointing and grasping in humans.Cerebral cortex, 6 2
J. Connolly, R. Andersen, M. Goodale (2003)
FMRI evidence for a 'parietal reach region' in the human brainExperimental Brain Research, 153
H. Sakata, M. Taira, M. Kusunoki, A. Murata, Yuji Tanaka (1997)
The TINS Lecture The parietal association cortex in depth perception and visual control of hand actionTrends in Neurosciences, 20
J. Talairach, P. Tournoux, Mark Rayport (1988)
Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging
G. Rizzolatti, M. Arbib (1998)
Language within our graspTrends in Neurosciences, 21
J. Kuhtz-Buschbeck, H. Ehrsson, H. Forssberg (2001)
Human brain activity in the control of fine static precision grip forces: an fMRI studyEuropean Journal of Neuroscience, 14
H. Ehrsson, A. Fagergren, T. Jonsson, G. Westling, Roland Johansson, H. Forssberg (2000)
Cortical activity in precision- versus power-grip tasks: an fMRI study.Journal of neurophysiology, 83 1
M. Matsumura, R. Kawashima, E. Naito, K. Satoh, Tsuneo Takahashi, Toru Yanagisawa, Hiroshi Fukuda (1996)
Changes in rCBF during grasping in humans examined by PETNeuroReport, 7
H. Kinoshita, N. Oku, K. Hashikawa, T. Nishimura (2000)
Functional brain areas used for the lifting of objects using a precision grip: a PET studyBrain Research, 857
J. DeSouza, S. Dukelow, J. Gati, Ravi Menon, R. Andersen, T. Vilis (2000)
Eye Position Signal Modulates a Human Parietal Pointing Region during Memory-Guided MovementsThe Journal of Neuroscience, 20
P. Battaglini, A. Muzur, C. Galletti, M. Skrap, A. Brovelli, P. Fattori (2002)
Effects of lesions to area V6A in monkeysExperimental Brain Research, 144
Z. Kourtzi, N. Kanwisher (2000)
Cortical Regions Involved in Perceiving Object ShapeThe Journal of Neuroscience, 20
(1981)
in press) fMRI evidence for a neurological dissociation between perceiving objects and grasping them Intersegmental coordination during reaching at natural visual objects Attention and performance IX
Per Roland, B. O’Sullivan, Ryuta Kawashima (1998)
Shape and roughness activate different somatosensory areas in the human brain.Proceedings of the National Academy of Sciences of the United States of America, 95 6
M. Goodale, A. Milner, L. Jakobson, D. Carey (1991)
A neurological dissociation between perceiving objects and grasping themNature, 349
R. Caminiti, Paul Johnson, Y. Burnod (1992)
Control of arm movement in space : neurophysiological and computational approaches
A. Bodegård, S. Geyer, C. Grefkes, K. Zilles, P. Roland (2001)
Hierarchical Processing of Tactile Shape in the Human BrainNeuron, 31
R. Birn, P. Bandettini, R. Cox, R. Shaker (1999)
Event‐related fMRI of tasks involving brief motionHuman Brain Mapping, 7
M. Goodale, A. Milner (1992)
Separate visual pathways for perception and actionTrends in Neurosciences, 15
H. Sakata, M. Taira, M. Kusunoki, A. Murata, K. Tsutsui, Yuji Tanaka, W. Shein, Yukiko Miyashita (1999)
Neural representation of three-dimensional features of manipulation objects with stereopsisExperimental Brain Research, 128
Masato Taira, Seiichiro Mine, A. Georgopoulos, Akira Murata, H. Sakata (1990)
Parietal cortex neurons of the monkey related to the visual guidance of hand movementExperimental Brain Research, 83
L. Fogassi, V. Gallese, G. Buccino, L. Craighero, L. Fadiga, G. Rizzolatti (2001)
Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study.Brain : a journal of neurology, 124 Pt 3
K. Grill-Spector, Z. Kourtzi, N. Kanwisher (2001)
The lateral occipital complex and its role in object recognitionVision Research, 41
Although both reaching and grasping require transporting the hand to the object location, only grasping also requires processing of object shape, size and orientation to preshape the hand. Behavioural and neuropsychological evidence suggests that the object processing required for grasping relies on different neural substrates from those mediating object recognition. Specifically, whereas object recognition is believed to rely on structures in the ventral (occipitotemporal) stream, object grasping appears to rely on structures in the dorsal (occipitoparietal) stream. We used functional magnetic resonance imaging (fMRI) to determine whether grasping (compared to reaching) produced activation in dorsal areas, ventral areas, or both. We found greater activity for grasping than reaching in several regions, including anterior intraparietal (AIP) cortex. We also performed a standard object perception localizer (comparing intact vs. scrambled 2D object images) in the same subjects to identify the lateral occipital complex (LOC), a ventral stream area believed to play a critical role in object recognition. Although LOC was activated by the objects presented on both grasping and reaching trials, there was no greater activity for grasping compared to reaching. These results suggest that dorsal areas, including AIP, but not ventral areas such as LOC, play a fundamental role in computing object properties during grasping.
Experimental Brain Research – Springer Journals
Published: Nov 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.