Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Growth strain in coconut palm trees

Growth strain in coconut palm trees Until recently, growth stress studies have been made only on coniferous and dicotyledonous trees. Growth stress of trees is thought to be initiated in newly formed secondary xylem cells. This stress can accumulate for years and is distributed inside the trunk. Major characteristics of the trunk of monocotyledonous trees include numerous vascular bundles scattered inside the ground tissue and the lack of secondary growth for enlarging the diameter of the trunk. We used the strain gauge method to measure the released growth strain of the monocotyledonous woody palm, coconut (Cocos nucifera L.), and to investigate the surface growth strain of the trunk and central cylinder at different trunk heights. The internal strains of both vertical and leaning trunks were measured and compared with those of coniferous and dicotyledonous trees. We found that tensile stress existed longitudinally on the surface of vertically growing trunks, whereas compression stress was found at the bending position of leaning trunks. Compression stress was found in the outer part of the central cylinder, whereas tensile stress is generally found in the outer part of the trunk in coniferous and dicotyledonous trees. The distribution of strain in the palm trunk is similar to that of compression wood of the leaning trunk of a conifer. Specific gravity was greater in the outer part of the trunk than in the inner part of the trunk. This difference may be related to the distribution of growth stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Physiology Oxford University Press

Growth strain in coconut palm trees

Loading next page...
 
/lp/oxford-university-press/growth-strain-in-coconut-palm-trees-0W0sKTPBo0

References (26)

Publisher
Oxford University Press
Copyright
© Published by Oxford University Press.
ISSN
0829-318X
eISSN
1758-4469
DOI
10.1093/treephys/22.4.261
Publisher site
See Article on Publisher Site

Abstract

Until recently, growth stress studies have been made only on coniferous and dicotyledonous trees. Growth stress of trees is thought to be initiated in newly formed secondary xylem cells. This stress can accumulate for years and is distributed inside the trunk. Major characteristics of the trunk of monocotyledonous trees include numerous vascular bundles scattered inside the ground tissue and the lack of secondary growth for enlarging the diameter of the trunk. We used the strain gauge method to measure the released growth strain of the monocotyledonous woody palm, coconut (Cocos nucifera L.), and to investigate the surface growth strain of the trunk and central cylinder at different trunk heights. The internal strains of both vertical and leaning trunks were measured and compared with those of coniferous and dicotyledonous trees. We found that tensile stress existed longitudinally on the surface of vertically growing trunks, whereas compression stress was found at the bending position of leaning trunks. Compression stress was found in the outer part of the central cylinder, whereas tensile stress is generally found in the outer part of the trunk in coniferous and dicotyledonous trees. The distribution of strain in the palm trunk is similar to that of compression wood of the leaning trunk of a conifer. Specific gravity was greater in the outer part of the trunk than in the inner part of the trunk. This difference may be related to the distribution of growth stress.

Journal

Tree PhysiologyOxford University Press

Published: Mar 1, 2002

Keywords: central cylinder Cocos nucifera ground tissue internal strain monocotyledonous woody plants surface gowth strain vascular bundle

There are no references for this article.