Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Champdoré, M. Staiano, M. Rossi, S. d'Auria (2007)
Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interestJournal of The Royal Society Interface, 4
G. Tusnády, I. Simon (2001)
The HMMTOP transmembrane topology prediction serverBioinformatics, 17 9
Wang (1994)
115
Hongbin Shen, K. Chou (2007)
Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins.Protein engineering, design & selection : PEDS, 20 1
(2006)
Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains
Jennifer Gardy, Matthew Laird, Fei Chen, Sébastien Rey, C. Walsh, Martin Ester, Fiona Brinkman (2005)
PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysisBioinformatics, 21 5
Dongying Wu, P. Hugenholtz, K. Mavromatis, R. Pukall, Eileen Dalin, Natalia Ivanova, V. Kunin, Lynne Goodwin, Martin Wu, B. Tindall, S. Hooper, Amrita Pati, A. Lykidis, S. Spring, I. Anderson, P. D’haeseleer, A. Zemla, M. Singer, A. Lapidus, Matt Nolan, A. Copeland, Cliff Han, Feng Chen, Jan-Fang Cheng, S. Lucas, C. Kerfeld, E. Lang, S. Gronow, P. Chain, D. Bruce, E. Rubin, N. Kyrpides, H. Klenk, J. Eisen (2009)
A phylogeny-driven genomic encyclopaedia of Bacteria and ArchaeaNature, 462
Gardy (2006)
741Nat. Rev. Microbiol., 4
Jia-Ming Chang, E. Su, Allan Lo, Hua-Sheng Chiu, Ting-Yi Sung, W. Hsu (2008)
PSLDoc: Protein subcellular localization prediction based on gapped‐dipeptides and probabilistic latent semantic analysisProteins: Structure, 72
Håkan Viklund, A. Elofsson (2004)
Best α‐helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary informationProtein Science, 13
Chin-Sheng Yu, Yu‐Ching Chen, Chih-Hao Lu, Jenn-Kang Hwang (2006)
Prediction of protein subcellular localizationProteins: Structure, 64
PSORTb prokaryotic protein localization prediction
J. Wang, G. Chirn, T. Marr, B. Shapiro, D. Shasha, Kaizhong Zhang (1994)
Combinatorial pattern discovery for scientific data: some preliminary results
G. Winsor, T. Rossum, Raymond Lo, Bhavjinder Khaira, M. Whiteside, R. Hancock, F. Brinkman (2008)
Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomesNucleic Acids Research, 37
A. Billion, R. Ghai, T. Chakraborty, T. Hain (2006)
Augur - a computational pipeline for whole genome microbial surface protein prediction and classificationBioinformatics, 22 22
Setsuro Matsuda, Jean-Philippe Vert, Hiroto Saigo, Nobuhisa Ueda, H. Toh, T. Akutsu (2005)
A novel representation of protein sequences for prediction of subcellular location using support vector machinesProtein Science, 14
M. Miyata, H. Ogaki (2006)
Cytoskeleton of MollicutesJournal of Molecular Microbiology and Biotechnology, 11
Gabor Melli, M. Ester, Anoop Sarkar (2007)
Recognition of Multi-sentence n-ary Subcellular Localization Mentions in Biomedical Abstracts
Bulashevska (2006)
298BMC Bioinformatics, 7
J. Gardy, F. Brinkman (2006)
Methods for predicting bacterial protein subcellular localizationNature Reviews Microbiology, 4
R. Samudrala, F. Heffron, J. Mcdermott (2009)
Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion SystemsPLoS Pathogens, 5
S. Rey, J. Gardy, F. Brinkman (2005)
Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteriaBMC Genomics, 6
Q. Chan, L. Foster (2008)
Changes in protein expression during honey bee larval developmentGenome Biology, 9
Yossi Matias, S. Muthukrishnan, S. Sahinalp, J. Ziv (1998)
Augmenting Suffix Trees, with Applications
Matias (1998)
67
Weizhong Li, A. Godzik (2006)
Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequencesBioinformatics, 22 13
C. Stover, X. Pham, A. Erwin, S. Mizoguchi, P. Warrener, M. Hickey, F. Brinkman, W. Hufnagle, D. Kowalik, Lagrou Mj, R. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Ying Yuan, L. Brody, S. Coulter, K. Folger, A. Kas, K. Larbig, R. Lim, Kelly Smith, D. Spencer, Gane Wong, Z. Wu, I. Paulsen, J. Reizer, M. Saier, R. Hancock, S. Lory, M. Olson (2000)
Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogenNature, 406
Roland Arnold, S. Brandmaier, F. Kleine, Patrick Tischler, E. Heinz, S. Behrens, Antti Niinikoski, H. Mewes, M. Horn, T. Rattei (2009)
Sequence-Based Prediction of Type III Secreted ProteinsPLoS Pathogens, 5
S. Rey, M. Acab, J. Gardy, Matthew Laird, K. Fays, C. Lambert, F. Brinkman (2004)
PSORTdb: a protein subcellular localization database for bacteriaNucleic Acids Research, 33
R. Nair, B. Rost (2002)
Sequence conserved for subcellular localizationProtein Science, 11
E. Su, Hua-Sheng Chiu, Allan Lo, Jenn-Kang Hwang, Ting-Yi Sung, W. Hsu (2007)
Protein subcellular localization prediction based on compartment-specific features and structure conservationBMC Bioinformatics, 8
B. Thompson, R. Murray (1981)
Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark.Canadian journal of microbiology, 27 7
K. Chou, Hongbin Shen (2006)
Large-scale predictions of gram-negative bacterial protein subcellular locations.Journal of proteome research, 5 12
Q. Chan, Charles Howes, L. Foster (2006)
Quantitative Comparison of Caste Differences in Honeybee Hemolymph*SMolecular & Cellular Proteomics, 5
Zhiyong Lu, D. Szafron, R. Greiner, P. Lu, D. Wishart, B. Poulin, J. Anvik, Cam Macdonell, Roman Eisner (2004)
Predicting subcellular localization of proteins using machine-learned classifiersBioinformatics, 20 4
Cathy Wu, R. Apweiler, A. Bairoch, D. Natale, W. Barker, B. Boeckmann, Serenella Ferro, E. Gasteiger, Hongzhan Huang, R. Lopez, M. Magrane, M. Martin, R. Mazumder, C. O’Donovan, Nicole Redaschi, Baris Suzek (2005)
The Universal Protein Resource (UniProt): an expanding universe of protein informationNucleic Acids Research, 34
Mamoon Rashid, Sudipto Saha, Gajendra Raghava (2007)
Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifsBMC Bioinformatics, 8
Miaomiao Zhou, J. Boekhorst, C. Francke, R. Siezen (2008)
LocateP: Genome-scale subcellular-location predictor for bacterial proteinsBMC Bioinformatics, 9
B. Niu, Yuhuan Jin, Kai-Yan Feng, W. Lu, Yu-Dong Cai, Guo-Zheng Li (2008)
Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteinsMolecular Diversity, 12
Motivation: PSORTb has remained the most precise bacterial protein subcellular localization (SCL) predictor since it was first made available in 2003. However, the recall needs to be improved and no accurate SCL predictors yet make predictions for archaea, nor differentiate important localization subcategories, such as proteins targeted to a host cell or bacterial hyperstructures/organelles. Such improvements should preferably be encompassed in a freely available web-based predictor that can also be used as a standalone program.Results: We developed PSORTb version 3.0 with improved recall, higher proteome-scale prediction coverage, and new refined localization subcategories. It is the first SCL predictor specifically geared for all prokaryotes, including archaea and bacteria with atypical membrane/cell wall topologies. It features an improved standalone program, with a new batch results delivery system complementing its web interface. We evaluated the most accurate SCL predictors using 5-fold cross validation plus we performed an independent proteomics analysis, showing that PSORTb 3.0 is the most accurate but can benefit from being complemented by Proteome Analyst predictions.Availability: http://www.psort.org/psortb (download open source software or use the web interface).Contact: [email protected] Information: Supplementary data are availableat Bioinformatics online.
Bioinformatics – Oxford University Press
Published: May 13, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.