Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2.

An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective... The adsorptive separation of C2H2 and CO2 via porous materials is nontrivial due to the close similarities of their boiling points and kinetic diameters. In this work, we describe a new flexible porous coordination polymer (PCP) [Mn(bdc)(dpe)] (H2bdc = 1,4-benzenedicarboxylic acid, dpe = 1,2-di(4-pyridyl)ethylene) having zero-dimensional pores, which shows an adsorbate discriminatory gate effect. The compound shows gate opening type abrupt adsorption for C2H2 but not for CO2, leading to an appreciable selective adsorption of CO2 over C2H2 at near ambient temperature (273 K). The origin of this unique selectivity, as unveiled by in situ adsorption-X-ray diffraction experiments and density functional theory calculations, is due to vastly different orientations between the phenylene ring of bdc and each gas in the nanopores. The structural change by photochemical transformation of this PCP via [2 + 2] photodimerization leads to the removal of inverse CO2/C2H2 selectivity, verifying the mechanism of the guest discriminatory gate effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Chemical Society Pubmed

An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2.

An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2.


Abstract

The adsorptive separation of C2H2 and CO2 via porous materials is nontrivial due to the close similarities of their boiling points and kinetic diameters. In this work, we describe a new flexible porous coordination polymer (PCP) [Mn(bdc)(dpe)] (H2bdc = 1,4-benzenedicarboxylic acid, dpe = 1,2-di(4-pyridyl)ethylene) having zero-dimensional pores, which shows an adsorbate discriminatory gate effect. The compound shows gate opening type abrupt adsorption for C2H2 but not for CO2, leading to an appreciable selective adsorption of CO2 over C2H2 at near ambient temperature (273 K). The origin of this unique selectivity, as unveiled by in situ adsorption-X-ray diffraction experiments and density functional theory calculations, is due to vastly different orientations between the phenylene ring of bdc and each gas in the nanopores. The structural change by photochemical transformation of this PCP via [2 + 2] photodimerization leads to the removal of inverse CO2/C2H2 selectivity, verifying the mechanism of the guest discriminatory gate effect.

Loading next page...
 
/lp/pubmed/an-adsorbate-discriminatory-gate-effect-in-a-flexible-porous-0oS0sLKJ50

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0002-7863
DOI
10.1021/jacs.5b10491
pmid
26876504

Abstract

The adsorptive separation of C2H2 and CO2 via porous materials is nontrivial due to the close similarities of their boiling points and kinetic diameters. In this work, we describe a new flexible porous coordination polymer (PCP) [Mn(bdc)(dpe)] (H2bdc = 1,4-benzenedicarboxylic acid, dpe = 1,2-di(4-pyridyl)ethylene) having zero-dimensional pores, which shows an adsorbate discriminatory gate effect. The compound shows gate opening type abrupt adsorption for C2H2 but not for CO2, leading to an appreciable selective adsorption of CO2 over C2H2 at near ambient temperature (273 K). The origin of this unique selectivity, as unveiled by in situ adsorption-X-ray diffraction experiments and density functional theory calculations, is due to vastly different orientations between the phenylene ring of bdc and each gas in the nanopores. The structural change by photochemical transformation of this PCP via [2 + 2] photodimerization leads to the removal of inverse CO2/C2H2 selectivity, verifying the mechanism of the guest discriminatory gate effect.

Journal

Journal of the American Chemical SocietyPubmed

Published: Sep 26, 2016

There are no references for this article.