Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers.

Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block... The self-assembly of dextran-block-polystyrene (dex-b-PS) block copolymers was investigated in solution. The hydrophobic PS weight fraction in these block copolymers ranges from 7 to 92% w/w, whereas the average number molar mass of dextran was kept constant at 6600 gmol(-1). Self-assembly by direct dissolution in water could be performed only for block copolymers with a low hydrophobic content (7% w/w), whereas mixtures of tetrahydrofuran and dimethylsulfoxide were required for higher PS content, before transferring the structures into water. Core-shell micelles, ovoïds, and vesicles could be identified upon characterization by light and neutrons scattering, atomic force microscopy, and transmission electron microscopy. Most of the morphologies observed were not expected considering the chemical composition of the block copolymers. Finally, the size and shape of these nanoparticles were fixed upon cross-linking the dextran block through reaction of the hydroxyl groups with divinylsulfone. The role of the dextran conformation on the self-assembly process is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomacromolecules Pubmed

Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers.

Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers.


Abstract

The self-assembly of dextran-block-polystyrene (dex-b-PS) block copolymers was investigated in solution. The hydrophobic PS weight fraction in these block copolymers ranges from 7 to 92% w/w, whereas the average number molar mass of dextran was kept constant at 6600 gmol(-1). Self-assembly by direct dissolution in water could be performed only for block copolymers with a low hydrophobic content (7% w/w), whereas mixtures of tetrahydrofuran and dimethylsulfoxide were required for higher PS content, before transferring the structures into water. Core-shell micelles, ovoïds, and vesicles could be identified upon characterization by light and neutrons scattering, atomic force microscopy, and transmission electron microscopy. Most of the morphologies observed were not expected considering the chemical composition of the block copolymers. Finally, the size and shape of these nanoparticles were fixed upon cross-linking the dextran block through reaction of the hydroxyl groups with divinylsulfone. The role of the dextran conformation on the self-assembly process is discussed.

Loading next page...
 
/lp/pubmed/micelles-and-polymersomes-obtained-by-self-assembly-of-dextran-and-0rrob8zL0X

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1525-7797
DOI
10.1021/bm800778n
pmid
19072234

Abstract

The self-assembly of dextran-block-polystyrene (dex-b-PS) block copolymers was investigated in solution. The hydrophobic PS weight fraction in these block copolymers ranges from 7 to 92% w/w, whereas the average number molar mass of dextran was kept constant at 6600 gmol(-1). Self-assembly by direct dissolution in water could be performed only for block copolymers with a low hydrophobic content (7% w/w), whereas mixtures of tetrahydrofuran and dimethylsulfoxide were required for higher PS content, before transferring the structures into water. Core-shell micelles, ovoïds, and vesicles could be identified upon characterization by light and neutrons scattering, atomic force microscopy, and transmission electron microscopy. Most of the morphologies observed were not expected considering the chemical composition of the block copolymers. Finally, the size and shape of these nanoparticles were fixed upon cross-linking the dextran block through reaction of the hydroxyl groups with divinylsulfone. The role of the dextran conformation on the self-assembly process is discussed.

Journal

BiomacromoleculesPubmed

Published: Mar 6, 2009

There are no references for this article.