Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Topper, Junfeng Guo, S. Clausen, C. Skovsted, Zhifei Zhang (2020)
Reply to ‘Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella’Nature Communications, 11
Andrew Bush, R. Bambach, D. Erwin (2011)
Ecospace Utilization During the Ediacaran Radiation and the Cambrian Eco-explosion
A. Rozanov, A. Zhuravlev (1992)
The Lower Cambrian Fossil Record of the Soviet Union
A. Zumberge, G. Love, P. Cárdenas, E. Sperling, S. Gunasekera, M. Rohrssen, E. Grosjean, J. Grotzinger, R. Summons (2018)
Demosponge steroid biomarker 26-methylstigmastane provides evidence for Neoproterozoic animalsNature Ecology & Evolution, 2
C. Darwin
On the origin of species by means of natural selection; or, The preservation of favoured races in the struggle for life / by Charles Darwin.
A. Bennett (1872)
The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for LifeNature, 5
R. Summons, D. Erwin (2018)
Chemical clues to the earliest animal fossilsScience, 361
O. Vinn (2006)
Possible cnidarian affinities ofTorellella (Hyolithelminthes, Upper Cambrian, Estonia)Paläontologische Zeitschrift, 80
Jun‐yuan Chen, Diying Huang, Qingqing Peng, H. Chi, Xiu-Qiang Wang, Man Feng (2003)
The first tunicate from the Early Cambrian of South ChinaProceedings of the National Academy of Sciences of the United States of America, 100
S. Morris, C. Menge (1991)
Cambroclaves and paracarinachitids, early skeletal problematica from the Lower Cambrian of south ChinaPalaeontology, 34
D. Erwin (1991)
Metazoan phylogeny and the Cambrian radiation.Trends in ecology & evolution, 6 4
Dongjing Fu, G. Tong, T. Dai, Wei Liu, Yuning Yang, Y. Zhang, L. Cui, Luoyang Li, Hao Yun, Yu Wu, Ao Sun, Cong Liu, Wenrui Pei, R. Gaines, Xingliang Zhang (2019)
The Qingjiang biota—A Burgess Shale–type fossil Lagerstätte from the early Cambrian of South ChinaScience, 363
V. Marusin, D. Grazhdankin (2018)
Enigmatic large-sized tubular fossils from the Terreneuvian of Arctic SiberiaPalZ, 92
D. Erwin (2020)
The origin of animal body plans: a view from fossil evidence and the regulatory genomeDevelopment, 147
M. Glaessner (1985)
The Dawn of Animal Life: A Biohistorical Study
S Bengtson (1990)
1Memoirs of the Association of Australasian Palaeontologists, 9
S Bengtson (1983)
The early history of the ConodontaFossils and Strata, 15
J. Antcliffe (2013)
Questioning the evidence of organic compounds called sponge biomarkersPalaeontology, 56
Xingliang Zhang, D. Shu, Jian Han, Zhifei Zhang, Jianni Liu, Dongjing Fu (2014)
Triggers for the Cambrian explosion: Hypotheses and problemsGondwana Research, 25
S. Morris (2003)
Life's Solution: Frontmatter
E. Sperling, R. Stockey (2018)
The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an "Explosion".Integrative and comparative biology, 58 4
W. Hay, A. Migdisov, A. Balukhovsky, C. Wold, S. Flögel, E. Söding (2006)
Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and lifePalaeogeography, Palaeoclimatology, Palaeoecology, 240
Yu Wu, Jiaxin Ma, Weiliang Lin, Ao Sun, Xingliang Zhang, Dongjing Fu (2021)
New anomalocaridids (Panarthropoda: Radiodonta) from the lower Cambrian Chengjiang Lagerstätte: Biostratigraphic and paleobiogeographic implicationsPalaeogeography, Palaeoclimatology, Palaeoecology, 569
A. Zhuravlev, R. Wood (2020)
Dynamic and synchronous changes in metazoan body size during the Cambrian ExplosionScientific Reports, 10
Y. Zhang, Xingliang Zhang (2017)
New Megasphaera-like microfossils reveal their reproductive strategiesPrecambrian Research, 300
JD Schiffbauer (2016)
The age of tubes: a window into biological transition at the Precambrian-Cambrian boundaryGeology, 44
Douglas Erwin (2015)
A public goods approach to major evolutionary innovationsGeobiology, 13
Olaf Elicki (2003)
Das Kambrium: Als das Leben „explodierte”︁ und eine völlig neue Welt entstandBiologie in unserer Zeit, 33
S. Weiner, P. Dove (2003)
An Overview of Biomineralization Processes and the Problem of the Vital EffectReviews in Mineralogy & Geochemistry, 54
A Seilacher, J-Y Chen, A Seilacher (1997)
The meaning of the Cambrian explosionThe Cambrian explosion and the fossil record
Joanna Wolfe (2017)
Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.Integrative and comparative biology, 57 3
A. Maloof, S. Porter, J. Moore, F. Dudás, S. Bowring, J. Higgins, D. Fike, M. Eddy (2010)
The earliest Cambrian record of animals and ocean geochemical changeGeological Society of America Bulletin, 122
S. Porter (2007)
Seawater Chemistry and Early Carbonate BiomineralizationScience, 316
MG Mángano, LA Buatois, MG Mángano, LA Buatois (2016)
The Cambrian explosionThe trace fossil record of major evolutionary events
Xingliang Zhang, P. Ahlberg, Loren Babcock, Duck Choi, G. Geyer, R. Gozalo, J. Hollingsworth, Guoxiang Li, Elena Naimark, Tatyana Pegel, M. Steiner, Thomas Wotte, Zhifei Zhang (2017)
Challenges in defining the base of Cambrian Series 2 and Stage 3Earth-Science Reviews, 172
H. Philippe, A. Poustka, Marta Chiodin, K. Hoff, C. Dessimoz, B. Tomiczek, Philipp Schiffer, Steven Müller, D. Domman, M. Horn, Heiner Kuhl, B. Timmermann, N. Satoh, T. Hikosaka-Katayama, H. Nakano, M. Rowe, M. Elphick, Morgane Thomas-Chollier, T. Hankeln, F. Mertes, A. Wallberg, J. Rast, R. Copley, P. Martinez, M. Telford (2019)
Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and AmbulacrariaCurrent Biology, 29
J. Duda, M. Kranendonk, V. Thiel, Danny Ionescu, H. Strauss, N. Schäfer, J. Reitner (2016)
A Rare Glimpse of Paleoarchean Life: Geobiology of an Exceptionally Preserved Microbial Mat Facies from the 3.4 Ga Strelley Pool Formation, Western AustraliaPLoS ONE, 11
A. Berry, S. Morris (1998)
Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals.Evolution, 52
A. Seilacher (2007)
The nature of vendobionts, 286
H. Lowenstam, D. Abbott (1975)
Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea).Science, 188 4186
Martin Rücklin, Philip Donoghue, Z. Johanson, Kate Trinajstic, Federica Marone, Marco Stampanoni (2012)
Development of teeth and jaws in the earliest jawed vertebratesNature, 491
E. Kupriyanova, T. Macdonald, G. Rouse (2006)
Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological dataZoologica Scripta, 35
M. Droser, L. Tarhan, J. Gehling (2017)
The Rise of Animals in a Changing Environment: Global Ecological Innovation in the Late EdiacaranAnnual Review of Earth and Planetary Sciences, 45
T. Guensburg, J. Sprinkle, A. Zhuravlev, R. Riding (2000)
19. Ecologic Radiation of Cambro-Ordovician Echinoderms
J. Schiffbauer, J. Huntley, Gretchen O'Neil, S. Darroch, M. Laflamme, Yaoping Cai (2016)
The latest Ediacaran Wormworld fauna: Setting the ecological stage for the Cambrian ExplosionGsa Today
Han Zeng, Fangchen Zhao, Kecheng Niu, Maoyan Zhu, Diying Huang (2020)
An early Cambrian euarthropod with radiodont-like raptorial appendagesNature, 588
Zhe Chen, X. Chen, Chuanming Zhou, Xunlai Yuan, S. Xiao (2018)
Late Ediacaran trackways produced by bilaterian animals with paired appendagesScience Advances, 4
G. Budd, S. Jensen (2007)
A critical reappraisal of the fossil record of the bilaterian phyla.Biological Reviews of The Cambridge Philosophical Society, 75
(1979)
Early arthropods, their appendages and relationships
Shmuel Bentov, E. Aflalo, Jenny Tynyakov, L. Glazer, A. Sagi (2016)
Calcium phosphate mineralization is widely applied in crustacean mandiblesScientific Reports, 6
J. Nursall (1959)
Oxygen as a Prerequisite to the Origin of the MetazoaNature, 183
Guangyi Wei, N. Planavsky, Tianchen He, Feifei Zhang, R. Stockey, D. Cole, Yi-bo Lin, H. Ling (2021)
Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope recordsEarth-Science Reviews
D. Shu, Y. Isozaki, Xingliang Zhang, Jan Han, S. Maruyama (2014)
Birth and early evolution of metazoansGondwana Research, 25
Xingliang Zhang, L. Cui (2016)
Oxygen requirements for the Cambrian explosionJournal of Earth Science, 27
J. Schopf (2000)
Solution to Darwin's dilemma: discovery of the missing Precambrian record of life.Proceedings of the National Academy of Sciences of the United States of America, 97 13
H. Lowenstam, S. Weiner (1992)
Phosphatic shell plate of the barnacle Ibla (Cirripedia): a bone-like structure.Proceedings of the National Academy of Sciences of the United States of America, 89 22
S. Morris (2000)
The Cambrian "explosion": slow-fuse or megatonnage?Proceedings of the National Academy of Sciences of the United States of America, 97 9
A. Daley, J. Antcliffe, Harriet Drage, S. Pates (2018)
Early fossil record of Euarthropoda and the Cambrian ExplosionProceedings of the National Academy of Sciences, 115
(2009)
Reconstruction of Phanerozoic climate
T. Lowenstein, M. Timofeeff, S. Brennan, L. Hardie, R. Demicco (2001)
Oscillations in Phanerozoic Seawater Chemistry: Evidence from Fluid InclusionsScience, 294
Erik Sperling, Jeffrey Robinson, Davide Pisani, Kevin Peterson (2010)
Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200‐Myr missing Precambrian fossil record of siliceous sponge spiculesGeobiology, 8
Zhe Chen, Chuanming Zhou, Xunlai Yuan, S. Xiao (2019)
Death march of a segmented and trilobate bilaterian elucidates early animal evolutionNature, 573
S. Morris (2006)
Darwin's dilemma: the realities of the Cambrian 'explosion'Philosophical Transactions of the Royal Society B, 361
J. Reitner, D. Mehl (1996)
Monophyly of the Porifera
S. Morris, J. Peel (1990)
Articulated halkieriids from the Lower Cambrian of north GreenlandNature, 345
A. Liu, J. Matthews, Latha Menon, D. McIlroy, M. Brasier (2014)
Haootia quadriformis n. gen., n. sp., interpreted as a muscular cnidarian impression from the Late Ediacaran period (approx. 560 Ma)Proceedings of the Royal Society B: Biological Sciences, 281
M. Tynan (1983)
CORAL-LIKE MICROFOSSILS FROM THE LOWER CAMBRIAN OF CALIFORNIAJournal of Paleontology, 57
Omar Rota-Stabelli, A. Daley, D. Pisani (2013)
Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan EvolutionCurrent Biology, 23
(1956)
Der Beginn des Kambriums als biologische Wende
R. Flower (1954)
Cambrian cephalopods
M. Mángano, L. Buatois (2014)
Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacksProceedings of the Royal Society B: Biological Sciences, 281
(2001)
From DNA to diversity
A. Seilacher (1999)
Biomat-related lifestyles in the PrecambrianPALAIOS, 14
GT Ushatinskaya, AY Zhuravlev (1994)
On the problem of the skeletal biomineralisation (brachiopod example)Doklady Akademii Nauk, 337
C. Skovsted (2003)
Mobergellans (Problematica) from the Cambrian of Greenland, Siberia and KazakhstanPaläontologische Zeitschrift, 77
S. Xiao, M. Laflamme (2009)
On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota.Trends in ecology & evolution, 24 1
R. Fortey, D. Briggs, M. Wills (1996)
The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparityBiological Journal of The Linnean Society, 57
C. Skovsted, J. Peel (2011)
Hyolithellus in Life Position from the Lower Cambrian of North Greenland, 85
Jian Han, S. Morris, Q. Ou, D. Shu, H. Huang (2017)
Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)Nature, 542
J. Grotzinger, W. Watters, A. Knoll (2000)
Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia, 26
S. Xiao, A. Knoll (2000)
PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA, 74
(2002)
Mollusks , hyoliths , stenothecoids , and coeloscleritophorans
(2019)
When life exploded
T. Hearing, T. Harvey, M. Williams, M. Leng, A. Lamb, P. Wilby, S. Gabbott, A. Pohl, Y. Donnadieu (2018)
An early Cambrian greenhouse climateScience Advances, 4
Keren Treves, W. Traub, S. Weiner, L. Addadi (2003)
Aragonite Formation in the Chiton (Mollusca) GirdleHelvetica Chimica Acta, 86
Hao Yun, Xingliang Zhang, G. Brock, Luoyang Li, Guoxiang Li (2021)
Biomineralization of the Cambrian chancelloriidsGeology
I. Bobrovskiy, J. Hope, A. Ivantsov, B. Nettersheim, C. Hallmann, J. Brocks (2018)
Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animalsScience, 361
D-G Shu (2008)
Cambrian explosion: birth of animal treeGondwana Research, 14
R. Wood, D. Erwin (2018)
Innovation not recovery: dynamic redox promotes metazoan radiationsBiological Reviews, 93
S. Peng, L. Babcock, P. Ahlberg (2020)
The Cambrian PeriodGeologic Time Scale 2020
M. Reis, Y. Thawornwattana, K. Angelis, M. Telford, P. Donoghue, Ziheng Yang (2015)
Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular TimescalesCurrent Biology, 25
Yu Wu, Dongjing Fu, Jiaxin Ma, Weiliang Lin, Ao Sun, Xingliang Zhang (2021)
Houcaris gen. nov. from the early Cambrian (Stage 3) Chengjiang Lagerstätte expanded the palaeogeographical distribution of tamisiocaridids (Panarthropoda: Radiodonta)PalZ, 95
Yunhuan Liu, S. Xiao, Tiequan Shao, Jesse Broce, Huaqiao Zhang (2014)
The oldest known priapulid‐like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoansEvolution & Development, 16
T. Watson (2020)
These bizarre ancient species are rewriting animal evolutionNature, 586
M. Hughes, S. Gerber, M. Wills (2013)
Clades reach highest morphological disparity early in their evolutionProceedings of the National Academy of Sciences, 110
R. Fernández, T. Gabaldón (2019)
Gene gain and loss across the Metazoa Tree of LifeNature ecology & evolution, 4
(1997)
The meaning of the Cambrian explosion . In The Cambrian explosion and the fossil record , eds . J . - Y . Chen and A . Seilacher
M. Mángano, L. Buatois (2020)
The rise and early evolution of animals: where do we stand from a trace-fossil perspective?Interface Focus, 10
T. Tashiro, A. Ishida, M. Hori, M. Igisu, M. Koike, Pauline Méjean, N. Takahata, Y. Sano, T. Komiya (2017)
Early trace of life from 3.95 Ga sedimentary rocks in Labrador, CanadaNature, 549
K. Sdzuy (1960)
Zur Wende Präkambrium/KambriumPaläontologische Zeitschrift, 34
Miloš Vittori, V. Srot, K. Zagar, B. Bussmann, P. Aken, M. Čeh, J. Štrus (2016)
Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea).Journal of structural biology, 195 2
J. Peel (2006)
SCAPHOPODIZATION IN PALAEOZOIC MOLLUSCSPalaeontology, 49
A. Seilacher (1989)
Vendozoa: Organismic construction in the Proterozoic biosphereLethaia, 22
JB Antcliffe (2013)
917Palaeontology, 56
S. Darroch, Alison Cribb, L. Buatois, G. Germs, C. Kenchington, E. Smith, H. Mocke, Gretchen O'Neil, J. Schiffbauer, Katie Maloney, R. Racicot, Katherine Turk, Brandt Gibson, J. Almond, Bryce Koester, Thomas Boag, S. Tweedt, M. Laflamme (2021)
The trace fossil record of the Nama Group, Namibia: Exploring the terminal Ediacaran roots of the Cambrian explosionEarth-Science Reviews, 212
G. Arp, A. Reimer, J. Reitner (2001)
Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic OceansScience, 292
Yanan Shen, R. Buick, D. Canfield (2001)
Isotopic evidence for microbial sulphate reduction in the early Archaean eraNature, 410
Artem Kouchinsky (2000)
Skeletal microstructures of hyoliths from the Early Cambrian of SiberiaAlcheringa: An Australasian Journal of Palaeontology, 24
R. Bambach, Andrew Bush, D. Erwin (2007)
AUTECOLOGY AND THE FILLING OF ECOSPACE: KEY METAZOAN RADIATIONSPalaeontology, 50
C. Marshall (2006)
Explaining the Cambrian "Explosion" of AnimalsAnnual Review of Earth and Planetary Sciences, 34
J. Levinton (1992)
The big bang of animal evolution.Scientific American, 267 5
E. Landing, B. Kröger (2009)
The Oldest Cephalopods from East Laurentia, 83
R. Wood, A. Zhuravlev (2012)
Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletonsEarth-Science Reviews, 115
S. Jensen (2003)
The Proterozoic and Earliest Cambrian Trace Fossil Record; Patterns, Problems and Perspectives1, 43
M. Steiner, Guoxiang Li, Y. Qian, Maoyan Zhu, B. Erdtmann (2007)
Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China)Palaeogeography, Palaeoclimatology, Palaeoecology, 254
D. Jackson, L. Macis, J. Reitner, B. Degnan, G. Wörheide (2007)
Sponge Paleogenomics Reveals an Ancient Role for Carbonic Anhydrase in SkeletogenesisScience, 316
S. Morris (2002)
The Cambrian ExplosionCurrent Biology, 12
D. Murdock (2020)
The ‘biomineralization toolkit’ and the origin of animal skeletonsBiological Reviews, 95
D. Erwin, M. Laflamme, S. Tweedt, E. Sperling, D. Pisani, K. Peterson (2011)
The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of AnimalsScience, 334
R. Wood, J. Grotzinger, J. Dickson (2002)
Proterozoic Modular Biomineralized Metazoan from the Nama Group, NamibiaScience, 296
(2006)
The first brachiopods with a carbonate skeleton : appearance , migration , shell wall structure
Ben Yang, M. Steiner, Maoyan Zhu, Guoxiang Li, Jianni Liu, Pengju Liu (2016)
Transitional Ediacaran–Cambrian small skeletal fossil assemblages from South China and Kazakhstan: Implications for chronostratigraphy and metazoan evolutionPrecambrian Research, 285
D-G Shu, Y Isozaki, X-L Zhang, J Han, S Maruyama (2014)
The birth and evolution of metazoansGondwana Research, 25
(2020)
The core value of Chengjiang fauna: the formation of the animal kingdom and the birth of basic human organs
D. Bottjer, Z. Yin, Fangchen Zhao, Maoyan Zhu (2019)
Comparative taphonomy and phylogenetic signal of phosphatized Weng’an and Kuanchuanpu BiotasPrecambrian Research
Yu Liu, Xingliang Zhang, Wei Liu, Qian Zhang (2008)
New bradoriids from the Lower Cambrian Yanwangbian formation of southern Shaanxi Province, Central ChinaPalaeoworld, 17
E. Pecoits, K. Konhauser, N. Aubet, L. Heaman, G. Veroslavsky, R. Stern, M. Gingras (2012)
Bilaterian Burrows and Grazing Behavior at >585 Million Years AgoScience, 336
B. Lefebvre (2007)
Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinodermsPalaeogeography, Palaeoclimatology, Palaeoecology, 245
GD Love, JA Zumberge, T Lyons, A Turchyn, C Reinhard (2021)
Emerging patterns in Proterozoic lipid biomarker records: Implications for marine biospheric evolution and the ecological rise of eukaryotesElements in geochemical tracers in earth system science
J. Levinton (2001)
Genetics, Paleontology, and Macroevolution: References
Thomas Cochran (1959)
I. The Problem
E. Sperling, Charles Wolock, Alex Morgan, Benjamin Gill, M. Kunzmann, G. Halverson, F. Macdonald, A. Knoll, D. Johnston (2015)
Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenationNature, 523
P. Dominguez, A. Jacobson, R. Jefferies (2002)
Paired gill slits in a fossil with a calcite skeletonNature, 417
HD Pflug (1972)
Systematik der jung-präkambrischen PetalonamaePaläontologische Zeitschrift, 46
Shmuel Bentov, P. Zaslansky, A. Al‐Sawalmih, A. Masic, P. Fratzl, A. Sagi, A. Berman, B. Aichmayer (2012)
Enamel-like apatite crown covering amorphous mineral in a crayfish mandibleNature Communications, 3
M. Govindan, Janice Hodge, K. Brown, M. Nunez-Smith (1993)
Distribution of cholesterol in Caribbean marine algaeSteroids, 58
E. Degens, J. Kazmierczak, V. Ittekkot (1986)
Biomineralization and the carbon isotope record, 35
C. Bengtson, Abaimova, Missarzhevsky (2010)
The early history of the Conodonta STEFAN BENGTSON FOSSILS AND STRATA
M. McMenamin (2013)
The Cambrian Explosion: The Construction of Animal Biodiversity., 63
D. Briggs, R. Fortey (1982)
The cuticle of the aglaspidid arthropods, a red‐herring in the early history of the vertebratesLethaia, 15
J. Lozano-Fernandez, R. Carton, Alastair Tanner, Mark Puttick, M. Blaxter, J. Vinther, J. Olesen, Gonzalo Giribet, G. Edgecombe, D. Pisani (2016)
A molecular palaeobiological exploration of arthropod terrestrializationPhilosophical Transactions of the Royal Society B: Biological Sciences, 371
Thomas Boag, S. Darroch, M. Laflamme (2016)
Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossilsPaleobiology, 42
Olaf Elicki (2003)
Als das Leben "explodierte" und eine völlig neue Welt entstand: Das Kambrium
HD Pflug (1974)
Vor- und Frühgeschichte der MetazoaNeues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 145
I. Bobrovskiy, J. Hope, B. Nettersheim, J. Volkman, C. Hallmann, J. Brocks (2020)
Algal origin of sponge sterane biomarkers negates the oldest evidence for animals in the rock recordNature Ecology & Evolution, 5
R-B Zhan, J-Y Rong, X-L Yuan, R-B Zhan, T Deng (2018)
Evolution of Early Paleozoic marine faunasLife evolution and environments
J. Carter, R. Hall (1991)
Polyplacophora, Scaphopoda, Archaeogastropoda and Paragastropoda (Mollusca) Plates 122–134
J. Botting, B. Nettersheim (2018)
Searching for sponge originsNature Ecology & Evolution, 2
Bradley Deline, Jenny Greenwood, James Clark, Mark Puttick, K. Peterson, P. Donoghue (2018)
Evolution of metazoan morphological disparityProceedings of the National Academy of Sciences of the United States of America, 115
J. Cowie (1964)
The Cambrian periodGeological Society, London, Special Publications, 1
P. Taylor, M. Weedon (2000)
Skeletal ultrastructure and phylogeny of cyclostome bryozoansZoological Journal of the Linnean Society, 128
E. Degens (1976)
Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell.Topics in current chemistry, 64
W. Fitch, F. Ayala (1994)
Tempo and mode in evolution.Proceedings of the National Academy of Sciences of the United States of America, 91 15
T. Topper, C. Skovsted (2017)
Keeping a lid on it: muscle scars and the mystery of the MobergellidaeZoological Journal of the Linnean Society, 180
P. Kruse, A. Zhuravlev, N. James (1995)
PRIMORDIAL METAZOAN-CALCIMICROBIAL REEFS : TOMMOTIAN (EARLY CAMBRIAN) OF THE SIBERIAN PLATFORMPALAIOS, 10
(2018)
Evolution of Early Paleozoic marine faunas. In Life evolution and environments
D. Jackson, L. Macis, J. Reitner, G. Wörheide (2011)
A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategyBMC Evolutionary Biology, 11
(2006)
A fresh look at Dickinsonian: removing it from the Vendobionta
E. Landing, Adam English, J. Keppie (2010)
Cambrian origin of all skeletalized metazoan phyla—Discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico)Geology, 38
J. Dunne, Richard Williams, Neo Martinez, R. Wood, D. Erwin (2008)
Compilation and Network Analyses of Cambrian Food WebsPLoS Biology, 6
B Runnegar (1985)
Shell microstructure of Cambrian molluscs replicated by calciteAlcheringa, 9
S Bengtson (1983)
5Fossils and Strata, 15
J. Payne, A. Boyer, James Brown, S. Finnegan, M. Kowalewski, Richard Krause, S. Lyons, C. McClain, D. McShea, Philip Novack-Gottshall, F. Smith, J. Stempien, Steve Wang (2009)
Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunityProceedings of the National Academy of Sciences, 106
P. Cloud (1948)
SOME PROBLEMS AND PATTERNS OF EVOLUTION EXEMPLIFIED BY FOSSIL INVERTEBRATESEvolution, 2
J. Valentine (2004)
On the Origin of Phyla
E. Degens, W. Luck, D. Perrin (1976)
Topics in Current Chemistry
JG Carter, RM Hall (1990)
Polyplacophora, Scaphopoda, Archaeogastropoda and Paragastropoda (Mollusca)Skeletal biomineralisation: patterns, processes and evolutionary trends, short course in geology
James Miller (1984)
Cambrian and earliest Ordovician conodont evolution, biofacies, and provincialism, 196
M. Fedonkin, B. Waggoner (1997)
The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organismNature, 388
D. Erwin (2007)
DISPARITY: MORPHOLOGICAL PATTERN AND DEVELOPMENTAL CONTEXTPalaeontology, 50
R. Bate, Barbara East (1972)
The structure of the ostracode carapaceLethaia, 5
Lennart Maldegem, B. Nettersheim, A. Leider, J. Brocks, P. Adam, P. Schaeffer, C. Hallmann (2020)
Geological alteration of Precambrian steroids mimics early animal signaturesNature Ecology & Evolution, 5
Jih-Pai Lin, A. Ivantsov, D. Briggs (2011)
The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropodsLethaia, 44
B. Runnegar (1982)
The Cambrian explosion: Animals or fossils?, 29
S. Peters, R. Gaines (2012)
Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosionNature, 484
(1998)
The Tommotian stage base as the Cambrian lower boundary in Siberia
B. Waggoner (2003)
The Ediacaran Biotas in Space and Time1, 43
Chao Li, Chengsheng Jin, N. Planavsky, T. Algeo, Cheng Meng, Xinglian Yang, Yuan-long Zhao, S. Xie (2017)
Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?Geology, 45
S. Jensen, M. Droser, J. Gehling (2005)
Trace fossil preservation and the early evolution of animalsPalaeogeography, Palaeoclimatology, Palaeoecology, 220
D. Ler, K. Towe (2010)
Microstructure and composition o f the trilob ite exoskeleton
G. Budd, R. Mann (2019)
Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocksInterface Focus, 10
J. Kazmierczak, V. Ittekkot, E. Degens (1985)
Biocalcification through time: environmental challenge and cellular responsePalZ, 59
M. Laflamme, J. Schiffbauer, Stephen Dornbos (2011)
Quantifying the evolution of early life
Tianchen He, Maoyan Zhu, Benjamin Mills, P. Wynn, A. Zhuravlev, R. Tostevin, Philip Strandmann, Aihua Yang, S. Poulton, G. Shields (2019)
Possible links between extreme oxygen perturbations and the Cambrian radiation of animalsNature geoscience, 12
B. Runnegar (1985)
Shell microstructures of Cambrian molluscs replicated by phosphateAlcheringa, 9
H. Pflug (1972)
Systematik der jung-präkambrischen PetalonamaePflug 1970Paläontologische Zeitschrift, 46
JE Sorauf, M Savarese (1995)
A lower Cambrian coral from South AustraliaPalaeontology, 38
A. Seilacher (1992)
Vendobionta and Psammocorallia: lost constructions of Precambrian evolutionJournal of the Geological Society, 149
H. Mißbach, J. Duda, A. Kerkhof, V. Lüders, A. Pack, J. Reitner, V. Thiel (2021)
Ingredients for microbial life preserved in 3.5 billion-year-old fluid inclusionsNature Communications, 12
S. Zamora, D. Wright, R. Mooi, B. Lefebvre, T. Guensburg, P. Gorzelak, B. David, C. Sumrall, Selina Cole, A. Hunter, J. Sprinkle, J. Thompson, T. Ewin, O. Fatka, E. Nardin, M. Reich, M. Nohejlová, Imran Rahman (2020)
Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome YanjiahellaNature Communications, 11
(1995)
Early Palaozoic diversification of sponges: new data and evidence
G. Love, J. Zumberge (2021)
Emerging Patterns in Proterozoic Lipid Biomarker Records
R. Kodner, R. Summons, A. Pearson, N. King, A. Knoll (2008)
Sterols in a unicellular relative of the metazoansProceedings of the National Academy of Sciences, 105
Z. Yin, Kelly Vargas, John Cunningham, S. Bengtson, Maoyan Zhu, F. Marone, P. Donoghue (2019)
The Early Ediacaran Caveasphaera Foreshadows the Evolutionary Origin of Animal-like EmbryologyCurrent Biology, 29
R. Wood, A. Penny (2018)
Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferanProceedings of the Royal Society B: Biological Sciences, 285
E. Sperling, J. Vinther (2010)
A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modesEvolution & Development, 12
--Manuscript Draft, Maoyan Zhu, A. Zhuravlev, R. Wood, Fangchen Zhao, Sergey Sokhov (2017)
A deep root for the Cambrian explosion: Implications of new bio- and chemostratigraphy from the Siberian PlatformGeology, 45
M. Mángano, L. Buatois (2021)
Cambrian ExplosionEncyclopedia of Geology
C. Skovsted, L. Holmer (2003)
The Early Cambrian [Botomian] stem group brachiopod Mickwitzia from Northeast GreenlandActa Palaeontologica Polonica, 48
J. Currey, A. Nash, W. Bonfield (1982)
Calcified cuticle in the stomatopod smashing limbJournal of Materials Science, 17
P. Taylor, B. Berning, Mark Wilson (2013)
Reinterpretation of the Cambrian ‘Bryozoan' Pywackia as an Octocoral, 87
D. Pisani, A. Liu (2015)
Animal Evolution: Only Rocks Can Set the ClockCurrent Biology, 25
W. Pett, M. Adamski, Maja Adamska, W. Francis, M. Eitel, D. Pisani, G. Wörheide (2018)
The role of homology and orthology in the phylogenomic analysis of metazoan gene contentbioRxiv
S. Carroll (2005)
Endless forms most beautiful : the new science of evo devo and the making of the animal kingdom
JW Valentine, DH Erwin, RA Raff (1987)
Interpreting great developmental experiments: the fossil recordDevelopment as an evolutionary process
M-Y Zhu, F-C Zhao, Z-J Yin, H Zeng, G-X Li (2019)
The Cambrian explosion: advances and perspectives from ChinaScience China Earth Sciences, 49
R. Hoare, Pojeta John (2006)
ORDOVICIAN POLYPLACOPHORA (MOLLUSCA) FROM NORTH AMERICA, 80
G. Vermeij (1989)
The origin of skeletonsPALAIOS, 4
K. Simkiss (1977)
Biomineralization and detoxificationCalcified Tissue Research, 24
Xingliang Zhang, D. Shu (2014)
Causes and consequences of the Cambrian explosionScience China Earth Sciences, 57
D. Erwin, J. Valentine, J. Sepkoski (1987)
A COMPARATIVE STUDY OF DIVERSIFICATION EVENTS: THE EARLY PALEOZOIC VERSUS THE MESOZOICEvolution, 41
(1987)
Interpreting great developmen
L. Buatois, G. Narbonne, M. Mángano, N. Carmona, N. Carmona, P. Myrow (2014)
Ediacaran matground ecology persisted into the earliest CambrianNature Communications, 5
G. Geyer (1998)
Die kambrische ExplosionPaläontologische Zeitschrift, 72
Zhe Chen, S. Bengtson, Chuanming Zhou, H. Hua, Z. Yue (2008)
Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, ChinaLethaia, 41
J. Maletz (2019)
Tracing the evolutionary origins of the Hemichordata (Enteropneusta and Pterobranchia)Palaeoworld
Paul Smith, D. Harper (2013)
Causes of the Cambrian ExplosionScience, 341
G. Love, E. Grosjean, C. Stalvies, D. Fike, J. Grotzinger, A. Bradley, A. Kelly, M. Bhatia, W. Meredith, C. Snape, S. Bowring, D. Condon, R. Summons (2009)
Fossil steroids record the appearance of Demospongiae during the Cryogenian periodNature, 457
(2013)
Sponges of the Burgess Shale ( middle Cambrian ) , British Columbia
D. Briggs, R. Summons (2014)
Ancient biomolecules: Their origins, fossilization, and role in revealing the history of lifeBioEssays, 36
G. Budd, S. Jensen (2000)
A critical reappraisal of the fossil record of the bilaterian phylaBiological Reviews, 75
T. Ray (2006)
Life's Solution: Inevitable Humans in a Lonely UniverseArtificial Life, 12
W. Müller, Xiaohong Wang, S. Belikov, W. Tremel, U. Schlossmacher, A. Natoli, David Brandt, A. Boreiko, M. Tahir, I. Müller, H. Schröder (2008)
Formation of Siliceous Spicules in Demosponges: Example Suberites domuncula
Yaoping Cai, H. Hua, Xingliang Zhang (2013)
Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan LagerstättePrecambrian Research, 224
J. Antcliffe, R. Callow, M. Brasier (2014)
Giving the early fossil record of sponges a squeezeBiological Reviews, 89
J. Schiffbauer (2016)
RESEARCH FOCUS: The age of tubes: A window into biological transition at the Precambrian-Cambrian boundaryNeurosurgical Focus, 44
B. Runnegar, C. Bentley (1983)
Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari JellJournal of Paleontology, 57
(1997)
Lower Cambrian cambroclaves (incertae sedis) from Xinjiang, China, with comments on the morphological variability of sclerites
T. Lowenstein, L. Hardie, M. Timofeeff, R. Demicco (2003)
Secular variation in seawater chemistry and the origin of calcium chloride basinal brinesGeology, 31
C. Skovsted, G. Brock, J. Paterson, L. Holmer, G. Budd (2008)
The scleritome of Eccentrotheca from the Lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogenyGeology, 36
E. Degens, J. Kazmierczak, V. Ittekkot (1985)
Cellular response to Ca 2+ stress and its geological implicationsActa Palaeontologica Polonica, 30
P. Parkhaev (2017)
Origin and the Early Evolution of the Phylum MolluscaPaleontological Journal, 51
Xingliang Zhang, Wei Liu, Y. Isozaki, Tomohiko Sato (2017)
Centimeter-wide worm-like fossils from the lowest Cambrian of South ChinaScientific Reports, 7
Ben Yang, M. Steiner, J. Schiffbauer, T. Selly, Xuwen Wu, Cong Zhang, Pengju Liu (2020)
Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelidsScientific Reports, 10
C. Scotese, Haijun Song, Benjamin Mills, D. Meer (2021)
Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million yearsEarth-Science Reviews
M. Brasier (1987)
The dawn of animal lifeEarth-Science Reviews, 24
Jian Han, Jianni Liu, Zhifei Zhang, Xingliang Zhang, D. Shu (2007)
Trunk ornament on the palaeoscolecid worms Cricocosmia and Tabelliscolex from the Early Cambrian Chengjiang deposits of ChinaActa Palaeontologica Polonica, 52
R. Wood (2011)
Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralizationEarth-Science Reviews, 106
Guoxiang Li, M. Steiner, Xuejian Zhu, A. Yang, Haifeng Wang, B. Erdtmann (2007)
Early Cambrian metazoan fossil record of South China: Generic diversity and radiation patternsPalaeogeography, Palaeoclimatology, Palaeoecology, 254
J. Botting, L. Muir (2017)
Early sponge evolution: A review and phylogenetic frameworkPalaeoworld, 27
(1990)
Early Cambrian fossils from South Australia
Yaoping Cai, S. Xiao, Guoxiang Li, H. Hua (2019)
Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosionGeology
J. Paterson, G. Edgecombe, Michael Lee (2019)
Trilobite evolutionary rates constrain the duration of the Cambrian explosionProceedings of the National Academy of Sciences, 116
S. Bengtson, Yue Zhao (1997)
Fossilized Metazoan Embryos from the Earliest CambrianScience, 277
A. Zhuravlev (1993)
Were Ediacaran Vendobionta multicellulars, 190
Shmuel Bentov, Shai Abehsera, A. Sagi (2016)
The Mineralized Exoskeletons of Crustaceans
D. Shu (2008)
Cambrian explosion: Birth of tree of animalsGondwana Research, 14
X. Hou, R. Aldridge, J. Bergström, D. Siveter, D. Siveter, Xiangqian Feng (2004)
The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life
D. Erwin, S. Tweedt (2012)
Ecological drivers of the Ediacaran-Cambrian diversification of MetazoaEvolutionary Ecology, 26
AsaHG Gray, A. Dupree (1963)
I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION
(1974)
Vor-und Frühgeschichte der Metazoa. Neues Jahrbuch für Geologie und Paläontologie
D. McIlroy, H. Szaniawski (2000)
A lower Cambrian protoconodont apparatus from the Placentian of southeastern NewfoundlandLethaia, 33
Knauth Lp (1998)
Salinity history of the Earth's early oceanNature, 395
I. Boëchat, A. Krüger, R. Adrian (2006)
Sterol Composition of Freshwater Algivorous Ciliates Does Not Resemble Dietary CompositionMicrobial Ecology, 53
(2002)
The tubewall of Cambrian anabaritids
K. Müller (1979)
Phosphatocopine ostracodes with preserved appendages from the Upper Cambrian of SwedenLethaia, 12
G. Budd (2008)
The earliest fossil record of the animals and its significancePhilosophical Transactions of the Royal Society B: Biological Sciences, 363
T Watson (2020)
The bizarre species that are rewriting animal evolutionNature, 586
J. Vinther, C. Nielsen (2005)
The Early Cambrian Halkieria is a molluscZoologica Scripta, 34
T. Topper, Junfeng Guo, S. Clausen, C. Skovsted, Zhifei Zhang (2019)
A stem group echinoderm from the basal Cambrian of China and the origins of AmbulacrariaNature Communications, 10
G. Wray (2015)
Molecular clocks and the early evolution of metazoan nervous systemsPhilosophical Transactions of the Royal Society B: Biological Sciences, 370
Artem Kouchinsky, S. Bengtson, B. Runnegar, C. Skovsted, M. Steiner, M. Vendrasco (2011)
Chronology of early Cambrian biomineralizationGeological Magazine, 149
C. Laumer, R. Fernández, S. Lemer, David Combosch, K. Kocot, A. Riesgo, S. Andrade, W. Sterrer, M. Sørensen, Gonzalo Giribet (2019)
Revisiting metazoan phylogeny with genomic sampling of all phylaProceedings of the Royal Society B: Biological Sciences, 286
A. Zhuravlev, R. Wood (2008)
Eve of biomineralization: Controls on skeletal mineralogyGeology, 36
K. Lepot (2020)
Signatures of early microbial life from the Archean (4 to 2.5 Ga) eonEarth-Science Reviews, 209
B. Nettersheim, J. Brocks, Arne Schwelm, J. Hope, F. Not, M. Lomas, C. Schmidt, R. Schiebel, E. Nowack, P. Deckker, J. Pawłowski, S. Bowser, I. Bobrovskiy, K. Zonneveld, M. Kučera, M. Stuhr, C. Hallmann (2019)
Putative sponge biomarkers in unicellular Rhizaria question an early rise of animalsNature Ecology & Evolution, 3
L. Buatois, M. Mángano (2018)
The other biodiversity record: Innovations in animal-substrate interactions through geologic timeGSA Today
(2020)
Ecological diversity in terminal Ediacaran Gaojiashan biota
S. Gould (1989)
Wonderful Life: The Burgess Shale and the Nature of History
The Cambrian Explosion by nature is a three-phased explosion of animal body plans alongside episodic biomineralization, pulsed change of generic diversity, body size variation, and progressive increase of ecosystem complexity. The Cambrian was a time of crown groups nested by numbers of stem groups with a high-rank taxonomy of Linnaean system (classes and above). Some stem groups temporarily succeeded while others were ephemeral and underrepresented by few taxa. The high number of stem groups in the early history of animals is a major reason for morphological gaps across phyla that we see today. Most phylum-level clades achieved their maximal disparity (or morphological breadth) during the time interval close to their first appearance in the fossil record during the early Cambrian, whereas others, principally arthropods and chordates, exhibit a progressive exploration of morphospace in subsequent Phanerozoic. The overall envelope of metazoan morphospace occupation was already broad in the early Cambrian though it did not reach maximal disparity nor has diminished significantly as a consequence of extinction since the Cambrian. Intrinsic and extrinsic causes were extensively discussed but they are merely prerequisites for the Cambrian Explosion. Without the molecular evolution, there could be no Cambrian Explosion. However, the developmental system is alone insufficient to explain Cambrian Explosion. Time-equivalent environmental changes were often considered as extrinsic causes, but the time coincidence is also insufficient to establish causality. Like any other evolutionary event, it is the ecology that make the Cambrian Explosion possible though ecological processes failed to cause a burst of new body plans in the subsequent evolutionary radiations. The Cambrian Explosion is a polythetic event in natural history and manifested in many aspects. No simple, single cause can explain the entire phenomenon.
PalZ – Springer Journals
Published: Dec 1, 2021
Keywords: Cambrian explosion; Metazoa; Bilateria; Evolution; Darwin’s dilemma
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.