Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dong Yu, Junqiao Wu, Qian Gu, Hongkun Park (2006)
Germanium telluride nanowires and nanohelices with memory-switching behavior.Journal of the American Chemical Society, 128 25
M. Stan, P. Franzon, S. Goldstein, J. Lach, M. Ziegler (2003)
Molecular electronics: from devices and interconnect to circuits and architectureProc. IEEE, 91
D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, H.-S.P. Wong (2001)
Device scaling limits of Si MOSFETs and their application dependenciesProc. IEEE, 89
F. Patolsky, Brian Timko, Guihua Yu, Ying Fang, Andrew Greytak, Gengfeng Zheng, Charles Lieber (2006)
Supporting Online Material for Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays
A. Flood, J. Stoddart, D. Steuerman, J. Heath (2004)
Whence Molecular Electronics?Science, 306
F Patolsky (2006)
Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arraysScience, 313
M. Ventra, S. Pantelides, S. Pantelides, N. Lang (2000)
First-principles calculation of transport properties of a molecular devicePhysical review letters, 84 5
A. DeHon, P. Lincoln, J. Savage (2003)
Stochastic assembly of sublithographic nanoscale interfacesIEEE Transactions on Nanotechnology, 2
C. Collier, E. Wong, M. Bělohradský, F. Raymo, J. Stoddart, Philip Kuekes, R. Williams, J. Heath (1999)
Electronically configurable molecular-based logic gatesScience, 285 5426
J. Heath, P. Kuekes, G. Snider (1998)
A Defect-Tolerant Computer Architecture: Opportunities for NanotechnologyScience, 280
T. Rueckes, Kyoung-Ha Kim, E. Joselevich, G. Tseng, C. Cheung, Charles Lieber (2000)
Carbon nanotube-based nonvolatile random access memory for molecular computingScience, 289 5476
H. Goronkin, Yang Yang (2004)
High-Performance Emerging Solid-State Memory TechnologiesMRS Bulletin, 29
Ja’far, Haneman (1994)
Switching in amorphous-silicon devices.Physical review. B, Condensed matter, 49 19
X. Duan, Yu Huang, Charles Lieber (2002)
Nonvolatile Memory and Programmable Logic from Molecule-Gated NanowiresNano Letters, 2
Chen Yang, Z. Zhong, Charles Lieber (2005)
Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon NanowiresScience, 310
Yi Cui, Charles Lieber (2001)
Functional nanoscale electronic devices assembled using silicon nanowire building blocks.Science, 291 5505
Jonathan Green, J. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. Johnston-Halperin, E. Deionno, Yi Luo, Yi Luo, Bonnie Sheriff, Ke Xu, Y. Shin, H. Tseng, J. Stoddart, J. Heath (2007)
A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetreNature, 445
J. Greer, A. Korkin, J. Labanowski (2003)
Nano and Giga Challenges in Microelectronics
A. DeHon (2003)
Array-based architecture for FET-based, nanoscale electronicsIEEE Transactions on Nanotechnology, 2
M. Lankhorst, B. Ketelaars, Rob Wolters (2005)
Low-cost and nanoscale non-volatile memory concept for future silicon chipsNature Materials, 4
Junjie Chen, Wenyong Wang, M. Reed, A. Rawlett, D. Price, J. Tour (2000)
Room-Temperature Negative Differential Resistance in Nanoscale Molecular JunctionsApplied Physics Letters, 77
H Goronkin, Y Yang (2004)
High-performance emerging solid-state memory technologiesMater. Res. Soc. Bull., 29
R. Waser, M. Aono (2007)
Nanoionics-based resistive switching memories.Nature materials, 6 11
S. Chou, P. Krauss, P. Renstrom (1996)
Imprint Lithography with 25-Nanometer ResolutionScience, 272
J. Scott (2004)
Is There an Immortal Memory?Science, 304
S. Meister, H. Peng, K. Mcilwrath, K. Jarausch, Xiao Zhang, Yi Cui (2006)
Synthesis and characterization of phase-change nanowires.Nano letters, 6 7
Charles Lieber (2003)
Nanoscale Science and Technology: Building a Big Future from Small ThingsMRS Bulletin, 28
Se-Ho Lee, Dong-Kyun Ko, Yeonwoong Jung, R. Agarwal (2006)
Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowiresApplied Physics Letters, 89
G. Cuniberti, G. Fagas, K. Richter (2005)
Introducing Molecular ElectronicsLecture Notes in Physics, 680
Z. Zhong, Deli Wang, Yi Cui, Marc Bockrath, Charles Lieber (2003)
Nanowire Crossbar Arrays as Address Decoders for Integrated NanosystemsScience, 302
Yong Chen, G. Jung, D. Ohlberg, Xuema Li, D. Stewart, J. Jeppesen, K. Nielsen, J. Stoddart, R. Williams (2003)
Nanoscale molecular-switch crossbar circuitsNanotechnology, 14
P. Kuekes, W. Robinett, R. Williams (2005)
Improved voltage margins using linear error-correcting codes in resistor-logic demultiplexers for nanoelectronicsNanotechnology, 16
Yu Huang, X. Duan, Qingqiao Wei, Charles Lieber (2001)
Directed assembly of one-dimensional nanostructures into functional networks.Science, 291 5504
G. Snider, R. Williams (2007)
Nano/CMOS architectures using a field-programmable nanowire interconnectNanotechnology, 18
P. Kuekes, D. Stewart, R. Williams (2005)
The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuitsJournal of Applied Physics, 97
K. Likharev (2003)
Electronics Below 10 nm
Yeonwoong Jung, Se-Ho Lee, Dong-Kyun Ko, R. Agarwal (2006)
Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect.Journal of the American Chemical Society, 128 43
C. Collier, Gunter Mattersteig, E. Wong, Yi Luo, K. Beverly, J. Sampaio, F. Raymo, J. Stoddart, J. Heath (2000)
A [2]Catenane-Based Solid State Electronically Reconfigurable SwitchScience, 289
A. Guenther (2002)
International Trends in Applied Optics
D. Strukov, K. Likharev (2005)
CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevicesNanotechnology, 16
D. Strukov, K. Likharev (2004)
Prospects for terabit-scale nanoelectronic memoriesNanotechnology, 16
G. Snider (2005)
Computing with hysteretic resistor crossbarsApplied Physics A, 80
A. Ávila, R. Asomoza (2000)
Switching in coplanar amorphous hydrogenated silicon devicesSolid-state Electronics, 44
(2007)
Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics.Nano letters, 7 3
S. Zankovych, T. Hoffmann, J. Seekamp, J. Bruch, C. Torres (2001)
Nanoimprint lithography: challenges and prospectsNanotechnology, 12
C. Lau, D. Stewart, R. Williams, M. Bockrath (2004)
Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal StructuresNano Letters, 4
Gun Young, Wei Wu, Heon Lee, S. Wang, W. Tong, R. Williams (2005)
Fabrication of Multi-bit Crossbar Circuits at Sub-50 nm Half-pitch by Using UV-based Nanoimprint LithographyJournal of Photopolymer Science and Technology, 18
J. Seminario, A. Zacarias, J. Tour (2000)
Theoretical Study of a Molecular Resonant Tunneling DiodeJournal of the American Chemical Society, 122
Song Jin, D. Whang, Michael McAlpine, Robin Friedman, Yue Wu, Charles Lieber (2004)
Scalable Interconnection and Integration of Nanowire Devices without RegistrationNano Letters, 4
D. Whang, Song Jin, and Wu, Charles Lieber (2003)
Large-scale hierarchical organization of nanowire arrays for integrated nanosystemsNano Letters, 3
Yu Huang, X. Duan, Yi Cui, L. Lauhon, Kyoung-Ha Kim, Charles Lieber (2001)
Logic Gates and Computation from Assembled Nanowire Building BlocksScience, 294
Zachary Donhauser, B. Mantooth, K. Kelly, L. Bumm, Jason Monnell, J. Stapleton, D. Price, A. Rawlett, D. Allara, J. Tour, P. Weiss (2001)
Conductance Switching in Single Molecules Through Conformational ChangesScience, 292
Zhihong Chen, J. Appenzeller, Yu-Ming Lin, Jennifer Sippel-Oakley, A. Rinzler, Jinyao Tang, S. Wind, P. Solomon, P. Avouris (2006)
An Integrated Logic Circuit Assembled on a Single Carbon NanotubeScience, 311
M. Ratner (2002)
Introducing molecular electronicsMaterials Today, 5
A. Owen, P. Comber, J. Hajtó, M. Rose, A. Snell (1992)
Switching in amorphous devicesInternational Journal of Electronics, 73
M. Reed, Chongwu Zhou, C. Muller, T. Burgin, J. Tour (1997)
Conductance of a Molecular JunctionScience, 278
P. McEuen, M. Fuhrer, Hongkun Park (2002)
Single-walled carbon nanotube electronicsIEEE Transactions on Nanotechnology, 1
CM Lieber (2003)
Nanoscale science and technology: building a big future from small thingsMater. Res. Soc. Bull., 28
N. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, Pierre Petroff, J. Heath (2003)
Ultrahigh-Density Nanowire Lattices and CircuitsScience, 300
M. Reed, Jia Chen, A. Rawlett, D. Price, J. Tour (2001)
Molecular random access memory cellApplied Physics Letters, 78
(2005)
International Technology Roadmap for Semiconductors
P. Kuekes, W. Robinett, R. Roth, G. Seroussi, G. Snider, R. Williams (2006)
Resistor-logic demultiplexers for nanoelectronics based on constant-weight codesNanotechnology, 17
J. Jung, Geunsu Lee, S. Lee, Keundo Ban, Cheolkyu Bok, S. Moon (2005)
The Need of Top Anti-reflective Coating Materials for ArF Immersion LithographyJournal of Photopolymer Science and Technology, 18
M. Wuttig, N. Yamada (2007)
Phase-change materials for rewriteable data storage.Nature materials, 6 11
Jian Hu, H. Branz, R. Crandall, S. Ward, Qi Wang (2003)
Switching and filament formation in hot-wire CVD p-type a-Si:H devicesThin Solid Films, 430
Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core–shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.
Nature Materials – Springer Journals
Published: Nov 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.