Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract Our laboratory has proposed that the nucleus retroambiguus (NRA) generates the specific motor performance displayed by female cats during mating and that it uses direct pathways to the motoneurons of the lower limb muscles involved in this activity. In the hamster a similar NRA-projection system could generate the typical female mating posture, which is characterized by lordosis of the back as well as elevation of the tail. The present study attempted to determine whether this elevation of the tail is also part of the NRA-mating control system. The basic assumption was that elevation of the tail is a function of the cutaneus trunci muscle (CTM), which was verified by bilateral tetanic stimulation of the lateral thoracic nerves innervating the CTM. It resulted in upward movement of the tail to a position similar to the tail-up position during the lordosis posture. Retrograde tracing results showed that CTM motoneurons are located in the ventral and ventrolateral part of the C 7 –C 8 ventral horn, those innervating the tail region ventrolateral to those innervating the axillary region. Anterograde tracing studies showed that NRA fibers terminate bilaterally in both parts of the CTM motoneuronal cell groups. Electron microscopical studies revealed that labeled NRA terminals make monosynaptic contacts with retrogradely labeled dendrites of CTM motoneurons. Almost all of these terminal profiles had asymmetric synapses and contained spherical vesicles, which suggests an excitatory function. The observation that 15% of the labeled NRA terminals make more than one synaptic contact with a retrogradely labeled CTM motoneuronal dendrite within the same section indicates how powerful the NRA-CTM projection is. The results indicate that during mating the NRA not only could generate the lordosis posture but also the elevation of the tail. Footnotes Address for reprint requests: P. O. Gerrits, Dept. of Anatomy and Embryology, University of Groningen, Faculty of Medicine, Oostersingel 69, 9713 EZ Groningen, The Netherlands. The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “ advertisement ” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Copyright © 2000 The American Physiological Society
Journal of Neurophysiology – The American Physiological Society
Published: May 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.