Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Sutendra, P. Dromparis, R. Paulin, Sotirios Zervopoulos, A. Haromy, J. Nagendran, E. Michelakis (2013)
A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertensionJournal of Molecular Medicine, 91
H. Helbock, Kenneth Beckman, Bruce Ames (1999)
8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage.Methods in enzymology, 300
N. Sommer, M. Hüttemann, O. Pak, S. Scheibe, F. Knoepp, Christopher Sinkler, M. Malczyk, M. Gierhardt, A. Esfandiary, S. Kraut, F. Jonas, C. Veith, S. Aras, A. Sydykov, N. Alebrahimdehkordi, K. Giehl, M. Hecker, R. Brandes, W. Seeger, F. Grimminger, H. Ghofrani, R. Schermuly, L. Grossman, N. Weissmann (2017)
Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen SensingCirculation Research, 121
Vera Lachmanová, O. Hniličková, V. Povýšilová, V. Hampl, J. Herget (2005)
N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia.Life sciences, 77 2
N. Weissmann, S. Zeller, Rolf Schäfer, C. Turowski, M. Ay, K. Quanz, H. Ghofrani, R. Schermuly, L. Fink, W. Seeger, F. Grimminger (2006)
Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction.American journal of respiratory cell and molecular biology, 34 4
AM James, HM Cocheme, RA Smith (2005)
Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools, 280
Abdulrahman Doughan, S. Dikalov (2007)
Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis.Antioxidants & redox signaling, 9 11
S. Dikalov, M. Skatchkov, E. Bassenge (1997)
Spin trapping of superoxide radicals and peroxynitrite by 1-hydroxy-3-carboxy-pyrrolidine and 1-hydroxy-2,2,6, 6-tetramethyl-4-oxo-piperidine and the stability of corresponding nitroxyl radicals towards biological reductants.Biochemical and biophysical research communications, 231 3
C. Wong, G. Bansal, Ludmila Pavlickova, L. Marcocci, Yuichiro Suzuki (2013)
Reactive oxygen species and antioxidants in pulmonary hypertension.Antioxidants & redox signaling, 18 14
Derick Han, F. Antunes, R. Canali, D. Rettori, E. Cadenas (2003)
Voltage-dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol*The Journal of Biological Chemistry, 278
K. Kubo, T. Kobayashi, K. Yoshimura, S. Kusama (1985)
[Hypoxic pulmonary vasoconstriction].Kokyu to junkan. Respiration & circulation, 33 12
K. Berg, M. Ericsson, M. Lindgren, H. Gustafsson (2014)
A High Precision Method for Quantitative Measurements of Reactive Oxygen Species in Frozen BiopsiesPLoS ONE, 9
Helena Cochemé, Geoffrey Kelso, A. James, M. Ross, J. Trnka, T. Mahendiran, Jordi Asin-Cayuela, F. Blaikie, A. Manas, C. Porteous, Victoria Adlam, Robin Smith, M. Murphy (2007)
Mitochondrial targeting of quinones: therapeutic implications.Mitochondrion, 7 Suppl
G. Waypa, R. Guzy, P. Mungai, Mathew Mack, J. Marks, M. Roe, P. Schumacker (2006)
Increases in Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Calcium Responses in Pulmonary Artery Smooth Muscle CellsCirculation Research, 99
F. Weisel, C. Kloepping, Alexandra Pichl, A. Sydykov, B. Kojonazarov, J. Wilhelm, Markus Roth, K. Ridge, K. Igarashi, K. Nishimura, W. Maison, Claudia Wackendorff, W. Klepetko, P. Jaksch, H. Ghofrani, F. Grimminger, W. Seeger, R. Schermuly, N. Weissmann, G. Kwapiszewska (2014)
Impact of S-Adenosylmethionine Decarboxylase 1 on Pulmonary Vascular RemodelingCirculation, 129
C. Reily, Tanecia Mitchell, B. Chacko, G. Benavides, M. Murphy, V. Darley-Usmar (2013)
Mitochondrially targeted compounds and their impact on cellular bioenergetics☆Redox Biology, 1
Qing-Song Wang, Yun‐Min Zheng, Ling Dong, Y. Ho, Zhongmao Guo, Yong-Xiao Wang (2007)
Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes.Free radical biology & medicine, 42 5
Sherry Adesina, B. Kang, Kaiser Bijli, Jing Ma, Juan Cheng, T. Murphy, C. Hart, R. Sutliff (2015)
Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.Free radical biology & medicine, 87
Nikki Jernigan, T. Resta (2014)
Calcium Homeostasis and Sensitization in Pulmonary Arterial Smooth MuscleMicrocirculation, 21
G. Waypa, J. Marks, R. Guzy, P. Mungai, Jacqueline Schriewer, D. Dokic, M. Ball, P. Schumacker (2013)
Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation.American journal of respiratory and critical care medicine, 187 4
A. James, Helena Cochemé, Robin Smith, M. Murphy (2005)
Interactions of Mitochondria-targeted and Untargeted Ubiquinones with the Mitochondrial Respiratory Chain and Reactive Oxygen SpeciesJournal of Biological Chemistry, 280
E. Redout, A. Toorn, M. Zuidwijk, C. Kolk, C. Echteld, R. Musters, C. Hardeveld, W. Paulus, W. Simonides (2010)
Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure.American journal of physiology. Heart and circulatory physiology, 298 3
M. Königshoff, M. Kramer, N. Balsara, J. Wilhelm, O. Amarie, A. Jahn, F. Rose, L. Fink, W. Seeger, L. Schaefer, A. Günther, O. Eickelberg (2009)
WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis.The Journal of clinical investigation, 119 4
D. Lowes, B. Thottakam, N. Webster, M. Murphy, H. Galley (2008)
The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis.Free radical biology & medicine, 45 11
G. Waypa, J. Marks, R. Guzy, P. Mungai, Jacqueline Schriewer, D. Dokic, P. Schumacker (2010)
Hypoxia Triggers Subcellular Compartmental Redox Signaling in Vascular Smooth Muscle CellsCirculation Research, 106
F. Veit, O. Pak, R. Brandes, N. Weissmann (2015)
Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels.Antioxidants & redox signaling, 22 6
N. Weissmann, A. Sydykov, H. Kalwa, Ursula Storch, Beate Fuchs, M. Schnitzler, R. Brandes, F. Grimminger, M. Meissner, M. Freichel, Stefan Offermanns, F. Veit, O. Pak, K. Krause, R. Schermuly, A. Brewer, H. Schmidt, W. Seeger, Ajay Shah, T. Gudermann, H. Ghofrani, A. Dietrich (2012)
Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in miceNature Communications, 3
J. Trnka, M. Elkalaf, M. Andel (2015)
Lipophilic Triphenylphosphonium Cations Inhibit Mitochondrial Electron Transport Chain and Induce Mitochondrial Proton LeakPLoS ONE, 10
P. Schumacker (2011)
Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses.Proceedings of the American Thoracic Society, 8 6
E. Gane, F. Weilert, D. Orr, G. Keogh, M. Gibson, M. Lockhart, C. Frampton, K. Taylor, Robin Smith, M. Murphy (2010)
The mitochondria‐targeted anti‐oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patientsLiver International, 30
P. Dromparis, E. Michelakis (2013)
Mitochondria in vascular health and disease.Annual review of physiology, 75
J. West (2017)
Physiological Effects of Chronic Hypoxia.The New England journal of medicine, 376 20
Victoria Adlam, J. Harrison, C. Porteous, A. James, Robin Smith, M. Murphy, I. Sammut (2005)
Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injuryThe FASEB Journal, 19
A. Olschewski, E. Weir (2015)
Redox Regulation of Ion Channels in the Pulmonary CirculationAntioxidants & Redox Signaling, 22
N. Sommer, I. Strielkov, O. Pak, N. Weissmann (2015)
Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstrictionEuropean Respiratory Journal, 47
W. Janssen, Y. Schymura, Tatyana Novoyatleva, B. Kojonazarov, M. Boehm, A. Wietelmann, H. Luitel, K. Murmann, Damian Krompiec, Aleksandra Tretyn, S. Pullamsetti, N. Weissmann, W. Seeger, H. Ghofrani, R. Schermuly (2015)
5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart FailureBioMed Research International, 2015
E. Weir, Stephen Archer (2010)
The role of redox changes in oxygen sensingRespiratory Physiology & Neurobiology, 174
G. Supinski, Michael Murphy, L. Callahan (2009)
MitoQ administration prevents endotoxin-induced cardiac dysfunction.American journal of physiology. Regulatory, integrative and comparative physiology, 297 4
M. Malczyk, C. Veith, Beate Fuchs, Katharina Hofmann, Ursula Storch, R. Schermuly, M. Witzenrath, K. Ahlbrecht, C. Fecher-Trost, V. Flockerzi, H. Ghofrani, F. Grimminger, W. Seeger, T. Gudermann, A. Dietrich, N. Weissmann (2013)
Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension.American journal of respiratory and critical care medicine, 188 12
E. Michelakis, V. Gurtu, Linda Webster, G. Barnes, G. Watson, L. Howard, J. Cupitt, I. Paterson, Richard Thompson, Kelvin Chow, D. O’Regan, Lan Zhao, J. Wharton, D. Kiely, A. Kinnaird, Aristeidis Boukouris, Christopher White, J. Nagendran, D. Freed, S. Wort, J. Gibbs, M. Wilkins (2017)
Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patientsScience Translational Medicine, 9
S. Archer, M. Gomberg-Maitland, M. Maitland, S. Rich, Joe Garcia, E. Weir (2008)
Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer.American journal of physiology. Heart and circulatory physiology, 294 2
N. Sommer, O. Pak, Susanne Schörner, T. Derfuss, A. Krug, E. Gnaiger, H. Ghofrani, R. Schermuly, C. Huckstorf, W. Seeger, F. Grimminger, N. Weissmann (2010)
Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensingEuropean Respiratory Journal, 36
S. Leo, G. Szabadkai, R. Rizzuto (2008)
The Mitochondrial Antioxidants MitoE2 and MitoQ10 Increase Mitochondrial Ca2+ Load upon Cell Stimulation by Inhibiting Ca2+ Efflux from the OrganelleAnnals of the New York Academy of Sciences, 1147
G. Gregoriadis, B. McCormack, M. Obrenovic, R. Saffie, B. Zadi, Y. Perrie (1999)
Vaccine entrapment in liposomes.Methods, 19 1
F. Veit, O. Pak, B. Egemnazarov, Markus Roth, D. Kosanovic, M. Seimetz, N. Sommer, H. Ghofrani, W. Seeger, F. Grimminger, R. Brandes, R. Schermuly, N. Weissmann (2013)
Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling.Antioxidants & redox signaling, 19 18
Robin Smith, M. Murphy (2010)
Animal and human studies with the mitochondria‐targeted antioxidant MitoQAnnals of the New York Academy of Sciences, 1201
A. Maroz, R. Anderson, Robin Smith, M. Murphy (2009)
Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity.Free radical biology & medicine, 46 1
Increased mitochondrial reactive oxygen species (ROS), particularly superoxide, have been suggested to mediate hypoxic pulmonary vasoconstriction (HPV), chronic hypoxia-induced pulmonary hypertension and right ventricular remodelling.We determined ROS in acute and chronic hypoxia, and investigated the effect of the mitochondria-targeted antioxidant MitoQ under these conditions.The effect of MitoQ or its inactive carrier substance, decyltriphenylphosphonium, on acute HPV (1% O2 for 10 min) was investigated in isolated blood-free perfused mouse lungs. Mice exposed to chronic hypoxia (10% O2 for 4 weeks) or after banding of the main pulmonary artery were treated with MitoQ or decyltriphenylphosphonium (50 mg·kg−1·day−1).Total cellular superoxide and mitochondrial ROS levels were increased in pulmonary artery smooth muscle cells but decreased in pulmonary fibroblasts in acute hypoxia. MitoQ significantly inhibited HPV and acute hypoxia-induced rise in superoxide concentration. ROS was decreased in pulmonary artery smooth muscle cells, while it increased in the right ventricle after chronic hypoxia. Correspondingly, MitoQ did not affect the development of chronic hypoxia-induced pulmonary hypertension but attenuated right ventricular remodelling after chronic hypoxia as well as after pulmonary arterial banding.Increased mitochondrial ROS of pulmonary artery smooth muscle cells mediate acute HPV, but not chronic hypoxia-induced pulmonary hypertension. MitoQ may be beneficial under conditions of exaggerated acute HPV.
European Respiratory Journal – European Respiratory Society
Published: Mar 8, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.