Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Visual word identification requires readers to code the identity and order of the letters in a word and match this code against previously learned codes. Current models of this lexical matching process posit context-specific letter codes in which letter representations are tied to either specific serial positions or specific local contexts (e.g., letter clusters). The spatial coding model described here adopts a different approach to letter position coding and lexical matching based on context-independent letter representations. In this model, letter position is coded dynamically, with a scheme called spatial coding. Lexical matching is achieved via a method called superposition matching, in which input codes and learned codes are matched on the basis of the relative positions of their common letters. Simulations of the model illustrate its ability to explain a broad range of results from the masked form priming literature, as well as to capture benchmark findings from the unprimed lexical decision task.
Psychological Review – American Psychological Association
Published: Jul 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.