Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Prasanna, Jay Patel, S. Partovi, A. Madabhushi, P. Tiwari (2017)
Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findingsEuropean Radiology, 27
James O’Connor, E. Aboagye, J. Adams, H. Aerts, S. Barrington, A. Beer, R. Boellaard, Sarah Bohndiek, Michael Brady, Gina Brown, David Buckley, T. Chenevert, Laurence Clarke, Sandra Collette, Gary Cook, N deSouza, John Dickson, C. Dive, J. Evelhoch, Corinne Faivre-Finn, F. Gallagher, Fiona Gilbert, Robert Gillies, Vicky Goh, John Griffiths, Ashley Groves, Steve Halligan, Adrian Harris, D. Hawkes, Otto Hoekstra, Erich Huang, Brian Hutton, Edward Jackson, Gordon Jayson, Andrew Jones, D-M. Koh, Denis Lacombe, Philippe Lambin, Nathalie Lassau, Martin Leach, Ting-Yim Lee, E. Leen, Jason Lewis, Yan Liu, M. Lythgoe, Prakash Manoharan, Ross Maxwell, Kenneth Miles, Bruno Morgan, Steve Morris, Tony Ng, A. Padhani, Geoffrey Parker, Mike Partridge, A. Pathak, Andrew Peet, S. Punwani, Andrew Reynolds, Simon Robinson, L. Shankar, Ricky Sharma, D. Soloviev, S. Stroobants, Daniel Sullivan, Stuart Taylor, P. Tofts, Gillian Tozer, Marcel Herk, S. Walker-Samuel, James Wason, Kaye Williams, Paul Workman, T. Yankeelov, Kevin Brindle, Lisa McShane, Alan Jackson, J. Waterton (2016)
Imaging biomarker roadmap for cancer studiesNature reviews. Clinical oncology, 14
A. Sottoriva, A. Sottoriva, A. Sottoriva, I. Spiteri, S. Piccirillo, Anestis Touloumis, V. Collins, J. Marioni, C. Curtis, C. Watts, S. Tavaré, S. Tavaré, S. Tavaré (2013)
Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamicsProceedings of the National Academy of Sciences, 110
Srishti Abrol, Aikaterini Kotrotsou, A. Salem, P. Zinn, R. Colen (2017)
Radiomic Phenotyping in Brain Cancer to Unravel Hidden Information in Medical ImagesTopics in Magnetic Resonance Imaging, 26
A. Kassner, R. Thornhill (2010)
Texture Analysis: A Review of Neurologic MR Imaging ApplicationsAmerican Journal of Neuroradiology, 31
L. Cozzi, C. Franzese, A. Fogliata, D. Franceschini, P. Navarria, S. Tomatis, M. Scorsetti (2019)
Predicting survival and local control after radiochemotherapy in locally advanced head and neck cancer by means of computed tomography based radiomicsStrahlentherapie und Onkologie
S. Deoni (2010)
Quantitative Relaxometry of the BrainTopics in Magnetic Resonance Imaging, 21
Yu-Hung Chen, K. Lue, Sung‐Chao Chu, B. Chang, Ling-Yi Wang, Dai-Wei Liu, Shu-Hsin Liu, Y. Chao, Sheng-Chieh Chan (2019)
Combining the radiomic features and traditional parameters of 18F-FDG PET with clinical profiles to improve prognostic stratification in patients with esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy and surgeryAnnals of Nuclear Medicine, 33
T. Chenevert, L. Stegman, J. Taylor, P. Robertson, H. Greenberg, A. Rehemtulla, B. Ross (2000)
Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors.Journal of the National Cancer Institute, 92 24
R. Conners, C. Harlow (1980)
A Theoretical Comparison of Texture AlgorithmsIEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2
R. Haralick (1979)
Statistical and structural approaches to textureProceedings of the IEEE, 67
O. Grove, A. Berglund, M. Schabath, H. Aerts, A. Dekker, Hua Wang, E. Velazquez, P. Lambin, Yuhua Gu, Y. Balagurunathan, E. Eikman, R. Gatenby, S. Eschrich, R. Gillies (2015)
Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung AdenocarcinomaPLoS ONE, 10
Susan Chang, D. Cahill, K. Aldape, M. Mehta (2016)
Treatment of Adult Lower-Grade Glioma in the Era of Genomic Medicine.American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, 36
A. Chaddad, Christian Desrosiers, M. Toews (2016)
Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
M. Wagner, R. Nafe, A. Jurcoane, U. Pilatus, K. Franz, J. Rieger, J. Steinbach, E. Hattingen (2011)
Heterogeneity in malignant gliomas: a magnetic resonance analysis of spatial distribution of metabolite changes and regional blood volumeJournal of Neuro-Oncology, 103
Jinhua Yu, Zhifeng Shi, Yuxi Lian, Zeju Li, Tongtong Liu, Yuan Gao, Yuanyuan Wang, Liang Chen, Y. Mao (2017)
Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II gliomaEuropean Radiology, 27
S. Herlidou, Y. Rolland, J. Bansard, E. Rumeur, J. Certaines (1999)
Comparison of automated and visual texture analysis in MRI: characterization of normal and diseased skeletal muscle.Magnetic resonance imaging, 17 9
Yang Liu, Xiaopan Xu, Lulu Yin, Xi Zhang, Liang Li, H. Lu (2017)
Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture AnalysisAmerican Journal of Neuroradiology, 38
N. Mouthuy, G. Cosnard, J. Abarca‐Quinones, N. Michoux (2012)
Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases.Journal of neuroradiology. Journal de neuroradiologie, 39 5
R. Arya, Navjot Singh, Rahul Agrawal (2017)
A novel combination of second-order statistical features and segmentation using multi-layer superpixels for salient object detectionApplied Intelligence, 46
D. Assefa, H. Keller, C. Ménard, N. Laperriere, R. Ferrari, I. Yeung (2010)
Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation.Medical physics, 37 4
R. Barajas, J. Phillips, R. Parvataneni, A. Molinaro, E. Essock-Burns, G. Bourne, A. Parsa, M. Aghi, M. McDermott, M. Berger, S. Cha, Susan Chang, S. Nelson (2012)
Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging.Neuro-oncology, 14 7
Shan Wang, Meng Meng, Xue Zhang, Chen Wu, Ru Wang, Jiangfen Wu, M. Sami, K. Xu (2018)
Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest.Oncology letters, 15 5
Y. Ryu, S. Choi, Sang Park, T. Yun, Ji-hoon Kim, C. Sohn (2014)
Glioma: Application of Whole-Tumor Texture Analysis of Diffusion-Weighted Imaging for the Evaluation of Tumor HeterogeneityPLoS ONE, 9
H. Aerts, E. Velazquez, R. Leijenaar, C. Parmar, P. Grossmann, Sara Cavalho, J. Bussink, R. Monshouwer, Benjamin Haibe-Kains, D. Rietveld, F. Hoebers, M. Rietbergen, C. Leemans, A. Dekker, John Quackenbush, R. Gillies, P. Lambin (2014)
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approachNature Communications, 5
Xing Liu, Yiming Li, Shaowu Li, Xing Fan, Zhiyan Sun, Zhengyi Yang, Kai Wang, Zhong Zhang, T. Jiang, Yong Liu, Lei Wang, Yin-yan Wang (2019)
IDH mutation-specific radiomic signature in lower-grade gliomasAging (Albany NY), 11
H. Colman, Li Zhang, E. Sulman, J. Mcdonald, Nasrin Shooshtari, Andreana Rivera, S. Popoff, C. Nutt, D. Louis, J. Cairncross, M. Gilbert, H. Phillips, M. Mehta, A. Chakravarti, C. Pelloski, K. Bhat, B. Feuerstein, R. Jenkins, K. Aldape (2010)
A multigene predictor of outcome in glioblastoma.Neuro-oncology, 12 1
N. Parker, Peter Khong, J. Parkinson, V. Howell, H. Wheeler (2015)
Molecular Heterogeneity in Glioblastoma: Potential Clinical ImplicationsFrontiers in Oncology, 5
A. Chaddad, P. Daniel, Christian Desrosiers, M. Toews, B. Abdulkarim (2019)
Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival TimeIEEE Journal of Biomedical and Health Informatics, 23
D. Mahmoud-Ghoneim, Mariam Alkaabi, J. Certaines, F. Goettsche (2008)
The impact of image dynamic range on texture classification of brain white matterBMC Medical Imaging, 8
H. Abdollahi, K. Tanha, B. Mofid, A. Razzaghdoust, Afshin Saadipoor, Leila Khalafi, Mohsen Bakhshandeh, S. Mahdavi (2019)
MRI Radiomic Analysis of IMRT-Induced Bladder Wall Changes in Prostate Cancer Patients: A Relationship with Radiation Dose and Toxicity.Journal of medical imaging and radiation sciences, 50 2
D. Molina, J. Pérez-Beteta, B. Luque, E. Arregui, Manuel Calvo, J. Borrás, Carlos López, J. Martino, C. Velásquez, B. Asenjo, M. Benavides, I. Herruzo, A. Martínez-González, L. Pérez-Romasanta, E. Arana, V. Pérez-García (2016)
Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival.The British journal of radiology, 89 1064
He-xiang Wang, P. Nie, Yujian Wang, Wenjian Xu, S. Duan, Haisong Chen, D. Hao, Jihua Liu (2020)
Radiomics nomogram for differentiating between benign and malignant soft‐tissue masses of the extremitiesJournal of Magnetic Resonance Imaging, 51
Leland Hu, S. Ning, J. Eschbacher, N. Gaw, A. Dueck, Kris Smith, P. Nakaji, J. Plasencia, S. Ranjbar, S. Price, N. Tran, J. Loftus, R. Jenkins, B. O'neill, W. Elmquist, L. Baxter, F. Gao, D. Frakes, J. Karis, C. Zwart, K. Swanson, J. Sarkaria, Teresa Wu, J. Mitchell, Jing Li (2015)
Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in GlioblastomaPLoS ONE, 10
A. Wibmer, H. Hricak, Tatsuo Gondo, K. Matsumoto, H. Veeraraghavan, D. Fehr, Junting Zheng, D. Goldman, C. Moskowitz, S. Fine, V. Reuter, J. Eastham, E. Sala, H. Vargas (2015)
Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scoresEuropean Radiology, 25
J. Lupo, S. Cha, Susan Chang, S. Nelson (2005)
Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity.AJNR. American journal of neuroradiology, 26 6
H. Sharma (2014)
Multiparametric Imaging and MR Image Texture Analysis in Brain Tumors
D. Leithner, Blanca Bernard-Davila, Danny Martinez, J. Horvat, M. Jochelson, M. Marino, M. Marino, Daly Avendaño, Daly Avendaño, R. Ochoa-Albíztegui, E. Sutton, E. Morris, S. Thakur, K. Pinker, K. Pinker (2019)
Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular SubtypesMolecular Imaging and Biology, 22
J. Haubold, A. Demircioğlu, M. Gratz, M. Glas, K. Wrede, U. Sure, G. Antoch, K. Keyvani, M. Nittka, S. Kannengießer, V. Gulani, M. Griswold, K. Herrmann, M. Forsting, F. Nensa, L. Umutlu (2019)
Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR FingerprintingEuropean Journal of Nuclear Medicine and Molecular Imaging, 47
Bing Ji, Silun Wang, Zhou Liu, B. Weinberg, Xiaofeng Yang, Tianming Liu, Liya Wang, H. Mao (2019)
Revealing hemodynamic heterogeneity of gliomas based on signal profile features of dynamic susceptibility contrast-enhanced MRINeuroImage : Clinical, 23
A. Aibaidula, A. Chan, Zhifeng Shi, Yanxi Li, Rui-qi Zhang, R. Yang, K. Li, N. Chung, Yu Yao, Liangfu Zhou, Jinsong Wu, Hong Chen, H. Ng (2017)
Adult IDH wild-type lower-grade gliomas should be further stratifiedNeuro-Oncology, 19
M. Hegi, A. Diserens, T. Gorlia, M. Hamou, N. Tribolet, N. Tribolet, M. Weller, J. Kros, J. Hainfellner, W. Mason, L. Mariani, Jacoline Bromberg, P. Hau, R. Mirimanoff, J. Cairncross, R. Janzer, R. Stupp (2005)
MGMT Gene Silencing and Benefit from Temozolomide in GlioblastomaThe New England Journal of Medicine, 352
A. Chaddad, S. Sabri, T. Niazi, B. Abdulkarim (2018)
Prediction of survival with multi-scale radiomic analysis in glioblastoma patientsMedical & Biological Engineering & Computing, 56
Jacob Miller, E. Bennett, R. Xiao, R. Kotecha, S. Chao, M. Vogelbaum, G. Barnett, L. Angelov, E. Murphy, Jennifer Yu, M. Ahluwalia, J. Suh, A. Mohammadi (2016)
Association Between Radiation Necrosis and Tumor Biology After Stereotactic Radiosurgery for Brain Metastasis.International journal of radiation oncology, biology, physics, 96 5
D. Hambardzumyan, G. Bergers (2015)
Glioblastoma: Defining Tumor Niches.Trends in cancer, 1 4
Chaitra Badve, A. Yu, S. Dastmalchian, Matthew Rogers, D. Ma, Yun Jiang, S. Margevicius, Shivani Pahwa, Z. Lu, M. Schluchter, J. Sunshine, M. Griswold, Andrew Sloan, V. Gulani (2017)
MR Fingerprinting of Adult Brain Tumors: Initial ExperienceAmerican Journal of Neuroradiology, 38
R. Haralick, K. Shanmugam, I. Dinstein (1973)
Textural Features for Image ClassificationIEEE Trans. Syst. Man Cybern., 3
(2008)
Statistical texture analysis proceedings of World Academy of
M. Haq (2013)
Texture analysis in the Logarithmic Image Processing (LIP) framework
M. Kuo, J. Gollub, C. Sirlin, C. Ooi, Xin Chen (2007)
Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma.Journal of vascular and interventional radiology : JVIR, 18 7
D. Ma, V. Gulani, N. Seiberlich, Kecheng Liu, J. Sunshine, J. Duerk, M. Griswold (2013)
Magnetic Resonance FingerprintingNature, 495
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
PurposeThis is a radiomics study investigating the ability of texture analysis of MRF maps to improve differentiation between intra-axial adult brain tumors and to predict survival in the glioblastoma cohort.MethodsMagnetic resonance fingerprinting (MRF) acquisition was performed on 31 patients across 3 groups: 17 glioblastomas, 6 low-grade gliomas, and 8 metastases. Using regions of interest for the solid tumor and peritumoral white matter on T1 and T2 maps, second-order texture features were calculated from gray-level co-occurrence matrices and gray-level run length matrices. Selected features were compared across the three tumor groups using Wilcoxon rank-sum test. Receiver operating characteristic curve analysis was performed for each feature. Kaplan-Meier method was used for survival analysis with log rank tests.ResultsLow-grade gliomas and glioblastomas had significantly higher run percentage, run entropy, and information measure of correlation 1 on T1 than metastases (p < 0.017). The best separation of all three tumor types was seen utilizing inverse difference normalized and homogeneity values for peritumoral white matter in both T1 and T2 maps (p < 0.017). In solid tumor T2 maps, lower values in entropy and higher values of maximum probability and high-gray run emphasis were associated with longer survival in glioblastoma patients (p < 0.05). Several texture features were associated with longer survival in glioblastoma patients on peritumoral white matter T1 maps (p < 0.05).ConclusionTexture analysis of MRF-derived maps can improve our ability to differentiate common adult brain tumors by characterizing tumor heterogeneity, and may have a role in predicting outcomes in patients with glioblastoma.
European Journal of Nuclear Medicine and Molecular Imaging – Springer Journals
Published: Sep 26, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.