Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Vaccination with soluble Aβ oligomers generates toxicity‐neutralizing antibodies

Vaccination with soluble Aβ oligomers generates toxicity‐neutralizing antibodies In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1–42 (Aβ1−42) solutions (mixtures of Aβ monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non‐fibrillar forms of Aβ. It is now known that Aβ toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Aβ1−42 oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Aβ1−42 solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Aβ in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell‐attached oligomers to receptor‐like puncta, and for immunoblots that show the presence of SDS‐stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno‐neutralization of soluble Aβ‐derived toxins. Analogous immuno‐neutralization of oligomers in humans may be a key in AD vaccines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

Loading next page...
 
/lp/wiley/vaccination-with-soluble-a-oligomers-generates-toxicity-neutralizing-2joWaUpdTn

References (59)

Publisher
Wiley
Copyright
Copyright © 2001 Wiley Subscription Services
ISSN
0022-3042
eISSN
1471-4159
DOI
10.1046/j.1471-4159.2001.00592.x
Publisher site
See Article on Publisher Site

Abstract

In recent studies of transgenic models of Alzheimer's disease (AD), it has been reported that antibodies to aged beta amyloid peptide 1–42 (Aβ1−42) solutions (mixtures of Aβ monomers, oligomers and amyloid fibrils) cause conspicuous reduction of amyloid plaques and neurological improvement. In some cases, however, neurological improvement has been independent of obvious plaque reduction, and it has been suggested that immunization might neutralize soluble, non‐fibrillar forms of Aβ. It is now known that Aβ toxicity resides not only in fibrils, but also in soluble protofibrils and oligomers. The current study has investigated the immune response to low doses of Aβ1−42 oligomers and the characteristics of the antibodies they induce. Rabbits that were injected with Aβ1−42 solutions containing only monomers and oligomers produced antibodies that preferentially bound to assembled forms of Aβ in immunoblots and in physiological solutions. The antibodies have proven useful for assays that can detect inhibitors of oligomer formation, for immunofluorescence localization of cell‐attached oligomers to receptor‐like puncta, and for immunoblots that show the presence of SDS‐stable oligomers in Alzheimer's brain tissue. The antibodies, moreover, were found to neutralize the toxicity of soluble oligomers in cell culture. Results support the hypothesis that immunizations of transgenic mice derive therapeutic benefit from the immuno‐neutralization of soluble Aβ‐derived toxins. Analogous immuno‐neutralization of oligomers in humans may be a key in AD vaccines.

Journal

Journal of NeurochemistryWiley

Published: Jan 1, 2001

Keywords: ; ; ; ;

There are no references for this article.