Ruth Douglas, S. Fienberg, M. Lee, A. Sampson, Lyn Whitaker (1990)
Positive dependence concepts for ordinal contingency tables
(1983)
Item steps (Heymans Bulletin 83-630-EX)
K. Sijtsma, B. Hemker (1998)
Nonparametric polytomous IRT models for invariant item ordering, with results for parametric modelsPsychometrika, 63
G. Rasch (1960)
Probabilistic models for some intelligence and attainment tests
L. Ark, M. Croon, K. Sijtsma (2007)
Mokken Scale Analysis for Dichotomous Items Using Marginal ModelsPsychometrika, 73
Neil Henry, R. Mokken (1973)
A Theory and Procedure of Scale Analysis.Contemporary Sociology, 2
Wijbrandt Schuur (2003)
Mokken Scale Analysis: Between the Guttman Scale and Parametric Item Response TheoryPolitical Analysis, 11
M. Shaked, J. Shanthikumar (1994)
Stochastic orders and their applications
B. Hemker, L. Ark, K. Sijtsma (2001)
On measurement properties of continuation ratio modelsPsychometrika, 66
F. Samejima (1997)
Graded Response Model
Hua-Hua Chang, J. Mazzeo (1994)
The unique correspondence of the item response function and item category response functions in polytomously scored item response modelsPsychometrika, 59
A. Weekers, Gavin Brown, B. Veldkamp (2009)
Analyzing the dimensionality of the students' conceptions of assessment (SCoA) inventory
G. Fischer, I. Molenaar (1995)
Rasch models: foundations, recent developments and applications
Roger Watson, I. Deary, B. Shipley (2008)
A hierarchy of distress: Mokken scaling of the GHQ-30Psychological Medicine, 38
G. Marcoulides, I. Moustaki (2002)
Latent variable and latent structure models
(1987)
Revisie Amsterdamse kinder intelligentie test. Handleiding (Revision Amsterdam child intelligence test)
G. Masters (1982)
A rasch model for partial credit scoringPsychometrika, 47
E. Muraki (1992)
A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHMETS Research Report Series, 1992
G. Engelenburg (1997)
On psychometric models for polytomous items with ordered categories within the framework of item response theory
Pinchen Yang, C. Cheng, Chen-Lin Chang, Tai-Ling Liu, Hsiu‐Yi Hsu, C. Yen (2013)
Wechsler Intelligence Scale for Children 4th edition‐Chinese version index scores in Taiwanese children with attention‐deficit/hyperactivity disorderPsychiatry and Clinical Neurosciences, 67
W. Linden, R. Hambleton (1997)
Handbook of Modern Item Response TheoryBiometrics, 54
W. Emons, K. Sijtsma, R. Meijer (2007)
On the consistency of individual classification using short scales.Psychological methods, 12 1
B. Hemker, K. Sijtsma, I. Molenaar, B. Junker (1997)
Stochastic ordering using the latent trait and the sum score in polytomous IRT modelsPsychometrika, 62
D. Wechsler (2003)
Wechsler intelligence scale for children
Brenda Jansen, H.L.J. Maas (1997)
Statistical Test of the Rule Assessment Methodology by Latent Class AnalysisDevelopmental Review, 17
H. Scheiblechner (1995)
Isotonic ordinal probabilistic models (ISOP)Psychometrika, 60
P. Rosenbaum (1987)
Probability inequalities for latent scalesBritish Journal of Mathematical and Statistical Psychology, 40
A. Agresti, M. Kateri (1991)
Categorical Data Analysis
van Ark, L. Andriès (2007)
Mokken Scale Analysis in RJournal of Statistical Software, 20
G. Mellenbergh (1995)
Conceptual Notes on Models for Discrete Polytomous Item ResponsesApplied Psychological Measurement, 19
D. Andrich (1978)
A rating formulation for ordered response categoriesPsychometrika, 43
E. Muraki (1992)
A generalized partial credit model: applications for an EM algorithmApplied Psychological Measurement, 16
G. Tutz (1990)
Sequential item response models with an ordered responseBritish Journal of Mathematical and Statistical Psychology, 43
C. Glas, N. Verhelst (1995)
Testing the Rasch Model
Q. Mcnemar (1947)
Note on the sampling error of the difference between correlated proportions or percentagesPsychometrika, 12
H. Block, A. Sampson, T. Savits (1990)
Topics in statistical dependence
I. Molenaar (1997)
Nonparametric Models for Polytomous Responses
R. Ligtvoet, L. Ark, Janneke Marvelde, K. Sijtsma (2010)
Investigating an Invariant Item Ordering for Polytomously Scored ItemsEducational and Psychological Measurement, 70
P. Rosenbaum (1987)
Comparing item characteristic curvesPsychometrika, 52
M. Petersen (2005)
Introduction to Nonparametric Item Response TheoryQuality of Life Research, 14
M. Hollander, F. Proschan, J. Sethuraman (1977)
Functions Decreasing in Transposition and Their Applications in Ranking ProblemsAnnals of Statistics, 5
I. Molenaar (2004)
About handy, handmade and handsome modelsStatistica Neerlandica, 58
R. Mokken (1997)
Handbook of modern item response theorySpringer US
P. Cavalini (1992)
It's an ill wind that brings no good. Studies on odour annoyance and the dispersion of odorant concentrations from industries.
E. Muraki (1990)
Fitting a Polytomous Item Response Model to Likert-Type DataApplied Psychological Measurement, 14
D. McInerney, G. Brown, G. Liem (2009)
Student Perspectives on Assessment: What Students Can Tell Us about Assessment for Learning
(2000)
User's Manual MSP5 for Windows
F. Samejima (1968)
Estimation of latent ability using a response pattern of graded scoresPsychometrika, 34
H. Scheiblechner (2003)
Nonparametric IRT: Testing the bi-isotonicity of isotonic probabilistic models (ISOP)Psychometrika, 68
K. Sijtsma, R. Meijer, L. Ark (2011)
Mokken scale analysis as time goes by: An update for scaling practitionersPersonality and Individual Differences, 50
Examples concerning the relationships between latent / manifest scales ( unpublished manuscript )
K. Sijtsma, B. Junker (1996)
A survey of theory and methods of invariant item ordering.The British journal of mathematical and statistical psychology, 49 ( Pt 1)
L. Ark, B. Hemker, Klaas Sijtsma (2001)
Hierarchically Related Nonparametric IRT Models, and Practical Data Analysis Methods
We propose three latent scales within the framework of nonparametric item response theory for polytomously scored items. Latent scales are models that imply an invariant item ordering, meaning that the order of the items is the same for each measurement value on the latent scale. This ordering property may be important in, for example, intelligence testing and person-fit analysis. We derive observable properties of the three latent scales that can each be used to investigate in real data whether the particular model adequately describes the data. We also propose a methodology for analyzing test data in an effort to find support for a latent scale, and we use two real-data examples to illustrate the practical use of this methodology.
Psychometrika – Cambridge University Press
Published: Jan 27, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.