Access the full text.
Sign up today, get DeepDyve free for 14 days.
Ravi Singh, Davide Pantarotto, D. McCarthy, O. Chaloin, J. Hoebeke, C. Partidos, J. Briand, M. Prato, A. Bianco, Kostas Kostarelos (2005)
Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.Journal of the American Chemical Society, 127 12
S. Baker, Wei Cai, Tami Lasseter, and Weidkamp, R. Hamers (2002)
Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and HybridizationNano Letters, 2
T. Odom, Jinlin Huang, P. Kim, Charles Lieber (2000)
Structure and Electronic Properties of Carbon NanotubesJournal of Physical Chemistry B, 104
F. Simmel (2008)
Dreidimensionale Nanokonstruktion mit DNAAngewandte Chemie, 120
M. Guéron, J. Leroy (2000)
The i-motif in nucleic acids.Current opinion in structural biology, 10 3
Chao Zhao, Yujun Song, Jinsong Ren, Xiaogang Qu (2009)
A DNA nanomachine induced by single-walled carbon nanotubes on gold surface.Biomaterials, 30 9
M. Zheng, A. Jagota, E. Semke, B. Diner, R. Mclean, S. Lustig, R. Richardson, N. Tassi (2003)
DNA-assisted dispersion and separation of carbon nanotubesNature Materials, 2
H. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker (2001)
Carbon Nanotube Single-Electron Transistors at Room TemperatureScience, 293
N. Seeman (2003)
DNA in a material worldNature, 421
C. Kang, I. Berger, C. Lockshin, R. Ratliff, R. Moyzis, Alexander Rich (1994)
Crystal structure of intercalated four-stranded d(C3T) at 1.4 A resolution.Proceedings of the National Academy of Sciences of the United States of America, 91 24
Shawn Ahmed, A. Kintanar, E. Henderson (1994)
Human telomeric C–strand tetraplexesNature Structural Biology, 1
Chao Zhao, Jinsong Ren, Xiaogang Qu (2008)
Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: more water molecules released.Chemistry, 14 18
Xu Wang, Fei Liu, G. Andavan, X. Jing, K. Singh, V. Yazdanpanah, N. Bruque, R. Pandey, R. Lake, M. Ozkan, Kang Wang, C. Ozkan (2006)
Carbon nanotube-DNA nanoarchitectures and electronic functionality.Small, 2 11
K. Gehring, J. Leroy, M. Guéron (1993)
A tetrameric DNA structure with protonated cytosine-cytosine base pairsNature, 363
Miguel Valcárcel, S. Cárdenas, B. Simonet (2007)
Role of carbon nanotubes in analytical science.Analytical chemistry, 79 13
Dongsheng Liu, S. Balasubramanian (2003)
A proton-fuelled DNA nanomachine.Angewandte Chemie, 42 46
S. Tans, A. Verschueren, C. Dekker (1998)
Room-temperature transistor based on a single carbon nanotubeNature, 393
Christof Niemeyer (2000)
Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology.Current opinion in chemical biology, 4 6
Jean-Louis Leroy, M. Guéron, J. Mergny, Claude Hélène (1994)
Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif.Nucleic acids research, 22 9
Xi Li, Y. Peng, Jinsong Ren, Xiaogang Qu (2006)
Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formationProceedings of the National Academy of Sciences, 103
E. Katz, I. Willner (2004)
Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics.Chemphyschem : a European journal of chemical physics and physical chemistry, 5 8
A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker (2001)
Logic Circuits with Carbon Nanotube TransistorsScience, 294
A. Javey, Qian Wang, A. Ural, Yiming Li, H. Dai (2002)
Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring OscillatorsNano Letters, 2
F. Simmel (2008)
Three-dimensional nanoconstruction with DNA.Angewandte Chemie, 47 32
D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato (2006)
Chemistry of carbon nanotubes.Chemical reviews, 106 3
D. Gilbert, J. Feigon (1999)
Multistranded DNA structures.Current opinion in structural biology, 9 3
J. Mergny (1999)
Fluorescence energy transfer as a probe for tetraplex formation: the i-motif.Biochemistry, 38 5
J. Leroy, K. Gehring, A. Kettani, M. Guéron (1993)
Acid multimers of oligodeoxycytidine strands: stoichiometry, base-pair characterization, and proton exchange properties.Biochemistry, 32 23
M. Hazani, R. Naaman, F. Hennrich, M. Kappes (2003)
Confocal Fluorescence Imaging of DNA-Functionalized Carbon NanotubesNano Letters, 3
Chao Zhao, Y. Peng, Yujun Song, Jinsong Ren, Xiaogang Qu (2008)
Self-assembly of single-stranded RNA on carbon nanotube: polyadenylic acid to form a duplex structure.Small, 4 5
(2002)
DNA-functionalized single-walled carbon nanotubesNanotechnology, 13
D. Britz, A. Khlobystov (2006)
Noncovalent interactions of molecules with single walled carbon nanotubes.Chemical Society reviews, 35 7
Xi Li, Y. Peng, Xiaogang Qu (2006)
Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B–A transition in solutionNucleic Acids Research, 34
M. Hazani, F. Hennrich, M. Kappes, R. Naaman, D. Peled, V. Sidorov, D. Shvarts (2004)
DNA-mediated self-assembly of carbon nanotube-based electronic devicesChemical Physics Letters, 391
Yulin Li, Xiaogang Han, Z. Deng (2007)
Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly.Angewandte Chemie, 46 39
Yanhong Lu, Xiaoying Yang, Yanfeng Ma, Feng Du, Zunfeng Liu, Yongsheng Chen (2006)
Self-assembled branched nanostructures of single-walled carbon nanotubes with DNA as linkersChemical Physics Letters, 419
Sinan Li, P. He, Jian-Guo Dong, Zhixin Guo, L. Dai (2005)
DNA-directed self-assembling of carbon nanotubes.Journal of the American Chemical Society, 127 1
P. Avouris (2002)
Molecular electronics with carbon nanotubes.Accounts of chemical research, 35 12
Single‐walled carbon nanotubes (SWNTs) have received much attention in nanotechnology because of their potential applications in molecular electronics, field‐emission devices, biomedical engineering, and biosensors. Carbon nanotubes as gene and drug delivery vectors or as “building blocks” in nano‐/microelectronic devices has been successfully explored. However, since SWNTs lack chemical recognition, SWNT‐based electronic devices and sensors are strictly related to the development of a bottom‐up self‐assembly technique. Here we present an example of using DNA duplex‐based protons (H+) as a fuel to control reversible assembly of SWNTs without generation of waste duplex products that poison DNA‐based systems.
Chemistry - A European Journal – Wiley
Published: Feb 14, 2012
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.