Access the full text.
Sign up today, get DeepDyve free for 14 days.
Maureen Charron, Evan Read, S. Haut, C. Michels (1989)
Molecular evolution of the telomere-associated MAL loci of Saccharomyces.Genetics, 122 2
Harma Brondijk, W. Konings, B. Poolman (2001)
Regulation of maltose transport in Saccharomyces cerevisiaeArchives of Microbiology, 176
O. Lowry, N. Rosebrough, A. Farr, R. Randall (1951)
Protein measurement with the Folin phenol reagent.The Journal of biological chemistry, 193 1
Sabire Özcan, M. Johnston (1999)
Function and Regulation of Yeast Hexose TransportersMicrobiology and Molecular Biology Reviews, 63
R. Serrano (1977)
Energy requirements for maltose transport in yeast.European journal of biochemistry, 80 1
C. Leeuwen, R. Weusthuis, E. Postma, P. Broek, J. Dijken (1992)
Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles.The Biochemical journal, 284 ( Pt 2)
Rasario Lagunas (1986)
Misconceptions about the energy metabolism of Saccharomyces cerevisiaeYeast, 2
Marta Rubio‐Texeira, J. Castrillo, A. Adam, U. Ugalde, J. Polaina (1998)
Highly efficient assimilation of lactose by a metabolically engineered strain of Saccharomyces cerevisiaeYeast, 14
F. Randez-Gil, P. Sanz, J. Prieto (1999)
Engineering baker's yeast: room for improvement.Trends in biotechnology, 17 6
Jasper Diderich, M. Schepper, P. Hoek, M. Luttik, J. Dijken, J. Pronk, P. Klaassen, H. Boelens, M. Mattos, K. Dam, A. Kruckeberg (1999)
Glucose Uptake Kinetics and Transcription of HXTGenes in Chemostat Cultures of Saccharomyces cerevisiae *The Journal of Biological Chemistry, 274
R. Weusthuis, M. Luttik, W. Scheffers, J. Dijken, J. Pronk (1994)
Is the Kluyver effect in yeasts caused by product inhibition?Microbiology, 140 ( Pt 7)
M. Goldenthal, M. Vanoni, B. Buchferer, J. Marmur (1987)
Regulation of MAL gene expression in yeast: Gene dosage effectsMolecular and General Genetics MGG, 209
B. Yao, P. Sollitti, Xiaolong Zhang, J. Marmur (1994)
Shared control of maltose induction and catabolite repression of the MAL structural genes in SaccharomycesMolecular and General Genetics MGG, 243
A. Adam, J. Prieto, Marta Rubio‐Texeira, J. Polaina (1999)
Construction of a lactose‐assimilating strain of baker's yeastYeast, 15
I. Medintz, Huan Jiang, C. Michels (1998)
The Role of Ubiquitin Conjugation in Glucose-induced Proteolysis of Saccharomyces Maltose Permease*The Journal of Biological Chemistry, 273
Matthew Walsh, H. Smits, M. Scholte, K. Damvan (1994)
Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucoseJournal of Bacteriology, 176
Zhen Hu, A. Gibson, J. Kim, L. Wojciechowicz, Bin Zhang, C. Michels (1999)
Functional domain analysis of the Saccharomyces MAL-activatorCurrent Genetics, 36
J. Barnett (1981)
The Utilization of Disaccharides and Some Other Sugars RY Yeasts1Advances in Carbohydrate Chemistry and Biochemistry, 39
R. Dubin, R. Needleman, D. Gossett, C. Michels (1985)
Identification of the structural gene encoding maltase within the MAL6 locus of Saccharomyces carlsbergensisJournal of Bacteriology, 164
K. Entian (2004)
A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptakeMolecular and General Genetics MGG, 179
Richard Needleman, David Kabackt, Robert DUBINf, E. PERKINSt, Nathan ROSENBERGt, Kathleen Sutherland, Douglas Forrest, Corinne MICHELSt (1984)
MAL6 of Saccharomyces: a complex genetic locus containing three genes required for maltose fermentation.Proceedings of the National Academy of Sciences of the United States of America, 81 9
P. Hoek, J. Dijken, J. Pronk (2000)
Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae.Enzyme and microbial technology, 26 9-10
E. Reifenberger, E. Boles, M. Ciriacy (1997)
Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression.European journal of biochemistry, 245 2
(1972)
Reactions leading to the formation of yeast cell material from glucose and ethanol
E. Postma, C. Verduyn, A. Kuiper, W. Scheffers, J. Dijken (1990)
Substrate‐accelerated death of Saccharomyces cerevisiae CBS 8066 under maltose stressYeast, 6
K. Entian, M. Loureiro-Dias (1990)
Misregulation of maltose uptake in a glucose repression defective mutant of Saccharomyces cerevisiae leads to glucose poisoning.Journal of general microbiology, 136 5
R. Weusthuis, Hendrik Adams, W. Scheffers, P. Johannes, Van, Dijken (1993)
Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture studyApplied and Environmental Microbiology, 59
H. Urk, P. Mark, W. Scheffers, J. Dijken (1988)
Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excessYeast, 4
G. Naumov, E. Naumova, Michels Ca (1994)
Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus.Genetics, 136 3
E. Riballo, Marga Herweijer, Dieter Wolf, Rosario Lagunas (1995)
Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosisJournal of Bacteriology, 177
P. Hoek, J. Dijken, J. Pronk (1998)
Effect of Specific Growth Rate on Fermentative Capacity of Baker’s YeastApplied and Environmental Microbiology, 64
V. Higgins, M. Braidwood, Philip Bell, P. Bissinger, I. Dawes, P. Attfield (1999)
Genetic Evidence That High Noninduced Maltase and Maltose Permease Activities, Governed by MALx3-Encoded Transcriptional Regulators, Determine Efficiency of Gas Production by Baker’s Yeast in Unsugared DoughApplied and Environmental Microbiology, 65
H. Federoff, T. Eccleshall, J. Marmur (1983)
Carbon catabolite repression of maltase synthesis in Saccharomyces carlsbergensisJournal of Bacteriology, 156
ChristopherJ.L. Klein, Lisbeth Olsson, Birgitte Rønnow, Jørn Mikkelsen, Jens Nielsen (1996)
Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiaeApplied and Environmental Microbiology, 62
Q. Cheng, C. Michels (1991)
MAL11 and MAL61 encode the inducible high-affinity maltose transporter of Saccharomyces cerevisiaeJournal of Bacteriology, 173
P. Bell, V. Higgins, P. Attfield (2001)
Comparison of fermentative capacities of industrial baking and wild‐type yeasts of the species Saccharomyces cerevisiae in different sugar mediaLetters in Applied Microbiology, 32
S. Dequin (2001)
The potential of genetic engineering for improving brewing, wine-making and baking yeastsApplied Microbiology and Biotechnology, 56
T. Brondijk, M. Rest, D. Pluim, Y. Vries, K. Stingl, B. Poolman, W. Konings (1998)
Catabolite Inactivation of Wild-type and Mutant Maltose Transport Proteins in Saccharomyces cerevisiae *The Journal of Biological Chemistry, 273
J. Bacteriol
Marta Rubio‐Texeira, Miguel Arévalo-Rodrı́guez, J. Lequerica, J. Polaina (2000)
Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes.Journal of biotechnology, 84 2
Benjamin Gonzalez, J. François, M. Renaud (1997)
A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanolYeast, 13
ChristopherJ.L. Klein, J. Rasmussen, B. Rønnow, L. Olsson, J. Nielsen (1999)
Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae.Journal of biotechnology, 68 2-3
Kevin Robinson, Kent Lai, T. Cannon, Patricia McGraw (1996)
Inositol transport in Saccharomyces cerevisiae is regulated by transcriptional and degradative endocytic mechanisms during the growth cycle that are distinct from inositol-induced regulation.Molecular biology of the cell, 7 1
J. Hammond (1995)
Genetically‐modified brewing yeasts for the 21st century. Progress to dateYeast, 11
S. Hong, J. Marmur (1986)
Primary structure of the maltase gene of the MAL6 locus of Saccharomyces carlsbergensis.Gene, 41 1
H. Jiang, I. Medintz, C. Michels (1997)
Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces.Molecular biology of the cell, 8 7
D. Wendell, L. Bisson (1993)
Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodiesJournal of Bacteriology, 175
E. Reifenberger, K. Freidel, M. Ciriacy (1995)
Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on qlycolytic fluxMolecular Microbiology, 16
Jasper Diderich, L. Raamsdonk, A. Kruckeberg, J. Berden, K. Dam (2001)
Physiological Properties of Saccharomyces cerevisiae from Which Hexokinase II Has Been DeletedApplied and Environmental Microbiology, 67
I. Medintz, Huan Jiang, Eun-Kyoung Han, Wen Cui, Corinne Michels (1996)
Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiaeJournal of Bacteriology, 178
J. Ferreira, A. Panek, P. Araujo (2000)
Inactivation of maltose permease and maltase in sporulating Saccharomyces cerevisiae.Canadian journal of microbiology, 46 4
R. Wieczorke, S. Krampe, Thomas Weierstall, K. Freidel, C. Hollenberg, E. Boles (1999)
Concurrent knock‐out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiaeFEBS Letters, 464
J. Dijken, J. Bauer, L. Brambilla, P. Duboc, J. François, C. Gancedo, M. Giuseppin, J. Heijnen, M. Hoare, H. Lange, E. Madden, P. Niederberger, J. Nielsen, J. Parrou, T. Petit, D. Porro, M. Reuss, N. Riel, M. Rizzi, H. Steensma, H. Steensma, C. Verrips, J. Vindeløv, J. Pronk (2000)
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains.Enzyme and microbial technology, 26 9-10
Huan Jiang, I. Medintz, Bin Zhang, C. Michels (2000)
Metabolic Signals Trigger Glucose-Induced Inactivation of Maltose Permease in SaccharomycesJournal of Bacteriology, 182
Corenelis Verduyn, J. Dijken, W. Scheffers (1984)
Colorimetric alcohol assays with alcohol oxidaseJournal of Microbiological Methods, 2
I. Medintz, Xin Wang, Thomas Hradek, Corinne Michels (2000)
A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity.Biochemistry, 39 15
C. Verduyn, E. Postma, W. Scheffers, J. Dijken (1992)
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous‐culture study on the regulation of respiration and alcoholic fermentationYeast, 8
Young Change, R. Dubin, E. Perkins, D. Forrest, C. Michels, R. Needleman (1988)
MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiaeCurrent Genetics, 14
E. Peñalver, P. Lucero, E. Moreno, R. Lagunas (1998)
Catabolite inactivation of the maltose transporter in nitrogen-starved yeast could be due to the stimulation of general protein turnover.FEMS microbiology letters, 166 2
L. Cazzador (1991)
Analysis of oscillations in yeast continuous cultures by a new simplified model.Bulletin of mathematical biology, 53 5
J. Biol. Chem
R. Needleman (1991)
Control of maltase synthesis in yeastMolecular Microbiology, 5
A. Kruckeberg (1996)
The hexose transporter family of Saccharomyces cerevisiaeArchives of Microbiology, 166
D. Kompala (1999)
Cybernetic modeling of spontaneous oscillations in continuous cultures of Saccharomyces cerevisiae.Journal of biotechnology, 71 1-3
Applied and Environmental Microbiology – Unpaywall
Published: Aug 28, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.