Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Carbohydrate Metabolism in Leaf Meristems of Tall Fescue I. Relationship to Genetically Altered Leaf Elongation Rates

Carbohydrate Metabolism in Leaf Meristems of Tall Fescue I. Relationship to Genetically Altered... Abstract The physiological bases for genetic differences in leaf growth rates were examined in two genotypes of tall fescue (Festuca arundinacea Schreb.) selected for a 50% difference in leaf elongation rate. Genotypes had similar dark respiration rates and concentrations of carbohydrate fractions in the leaf meristem and in each daily growth segment above the meristem. Dark respiration rates and concentrations of nonreducing sugars, fructans, and takadiastase-soluble carbohydrates were highest in leaf intercalary meristems and declined acropetally with tissue age. Concentrations of reducing sugars were 1.0% of dry weight in leaf meristems, 3.7% of dry weight in tissue adjacent to the meristem, then decreased progressively with distance from the meristem. Glucose, fructose, and myo-inositol comprised over 90% of the monosaccharides present in leaf meristems. Soluble protein concentration was 9.7 milligrams per gram fresh weight in leaf meristems, 5.5 milligrams per gram in tissues immediately above the meristem and, thereafter, increased linearly with distance from the meristem. Leaf meristems of the genotype exhibiting rapid leaf elongation contained 30% more soluble protein than those of the genotype selected for slow leaf elongation. The 4-fold difference in size of the leaf meristem appeared to be more important in influencing leaf elongation than were other characteristics examined. 2 Present address: Department of Agronomy, Purdue University, West Lafayette, Indiana 47907. 1 Supported by funds from the Missouri Agricultural Experiment Station, Journal Series Number 9429. This content is only available as a PDF. © 1984 American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Physiology Oxford University Press

Carbohydrate Metabolism in Leaf Meristems of Tall Fescue I. Relationship to Genetically Altered Leaf Elongation Rates

Plant Physiology , Volume 74 (3) – Mar 1, 1984

Loading next page...
 
/lp/oxford-university-press/carbohydrate-metabolism-in-leaf-meristems-of-tall-fescue-i-3yO72ceD00

References (28)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.74.3.590
Publisher site
See Article on Publisher Site

Abstract

Abstract The physiological bases for genetic differences in leaf growth rates were examined in two genotypes of tall fescue (Festuca arundinacea Schreb.) selected for a 50% difference in leaf elongation rate. Genotypes had similar dark respiration rates and concentrations of carbohydrate fractions in the leaf meristem and in each daily growth segment above the meristem. Dark respiration rates and concentrations of nonreducing sugars, fructans, and takadiastase-soluble carbohydrates were highest in leaf intercalary meristems and declined acropetally with tissue age. Concentrations of reducing sugars were 1.0% of dry weight in leaf meristems, 3.7% of dry weight in tissue adjacent to the meristem, then decreased progressively with distance from the meristem. Glucose, fructose, and myo-inositol comprised over 90% of the monosaccharides present in leaf meristems. Soluble protein concentration was 9.7 milligrams per gram fresh weight in leaf meristems, 5.5 milligrams per gram in tissues immediately above the meristem and, thereafter, increased linearly with distance from the meristem. Leaf meristems of the genotype exhibiting rapid leaf elongation contained 30% more soluble protein than those of the genotype selected for slow leaf elongation. The 4-fold difference in size of the leaf meristem appeared to be more important in influencing leaf elongation than were other characteristics examined. 2 Present address: Department of Agronomy, Purdue University, West Lafayette, Indiana 47907. 1 Supported by funds from the Missouri Agricultural Experiment Station, Journal Series Number 9429. This content is only available as a PDF. © 1984 American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

Plant PhysiologyOxford University Press

Published: Mar 1, 1984

There are no references for this article.