Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia

Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia Low-level methane emissions from coal mine ventilation air (CMV-CH4; i.e., 1 % CH4) can significantly contribute to global climate change, and therefore, treatment is important to reduce impacts. To investigate CMV-CH4 abatement potential, five different mixed methanotrohic consortia (MMCs) were established from soil/sediment sources, i.e., landfill top cover soil, bio-solid compost, vegetated humus soil, estuarine and marine sediments. Enrichment conditions for MMCs were as follows: nitrate mineral salt (NMS) medium, pH ~ 6.8; 25 °C; 20–25 % CH4; agitation 200 rpm; and culture period 20 days, in mini-bench-top bioreactors. The enriched cultures were supplemented with extra carbon (methanol 0.5–1.5 %, formate 5–15 mM, and acetate 5–15 mM), nitrogen (nitrate 0.5–1.5 g L−1, ammonium 0.1–0.5 g L−1, or urea: 0.1–0.5 g L−1), and trace elements (copper 1–5 μM, iron 1–5 μM, and zinc 1–5 μM) in different batch experiments to improve low-level CH4 abatement. Average CH4 oxidation capacities (MOCs) of MMCs varied between 1.712 ± 0.032 and 1.963 ± 0.057 mg g−1DWbiomass h−1. Addition of formate improved the MOCs of MMCs, but the dose-response varied for different MMCs. Acetate, nitrate and copper had no significant effect on MOCs, while addition of methanol, ammonium, urea, iron and zinc impacted negatively. Overall, MMCs enriched from marine sediments and landfill top cover soil showed high MOCs which were largely resilient to nutrient supplementation, suggesting a strong potential for biofilter development for industrial low-level CH4 abatement, such as those present in CMV. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia

Loading next page...
 
/lp/springer-journals/influence-of-nutrients-on-oxidation-of-low-level-methane-by-mixed-5PNTL369PJ

References (102)

Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
DOI
10.1007/s11356-016-6174-7
pmid
26867685
Publisher site
See Article on Publisher Site

Abstract

Low-level methane emissions from coal mine ventilation air (CMV-CH4; i.e., 1 % CH4) can significantly contribute to global climate change, and therefore, treatment is important to reduce impacts. To investigate CMV-CH4 abatement potential, five different mixed methanotrohic consortia (MMCs) were established from soil/sediment sources, i.e., landfill top cover soil, bio-solid compost, vegetated humus soil, estuarine and marine sediments. Enrichment conditions for MMCs were as follows: nitrate mineral salt (NMS) medium, pH ~ 6.8; 25 °C; 20–25 % CH4; agitation 200 rpm; and culture period 20 days, in mini-bench-top bioreactors. The enriched cultures were supplemented with extra carbon (methanol 0.5–1.5 %, formate 5–15 mM, and acetate 5–15 mM), nitrogen (nitrate 0.5–1.5 g L−1, ammonium 0.1–0.5 g L−1, or urea: 0.1–0.5 g L−1), and trace elements (copper 1–5 μM, iron 1–5 μM, and zinc 1–5 μM) in different batch experiments to improve low-level CH4 abatement. Average CH4 oxidation capacities (MOCs) of MMCs varied between 1.712 ± 0.032 and 1.963 ± 0.057 mg g−1DWbiomass h−1. Addition of formate improved the MOCs of MMCs, but the dose-response varied for different MMCs. Acetate, nitrate and copper had no significant effect on MOCs, while addition of methanol, ammonium, urea, iron and zinc impacted negatively. Overall, MMCs enriched from marine sediments and landfill top cover soil showed high MOCs which were largely resilient to nutrient supplementation, suggesting a strong potential for biofilter development for industrial low-level CH4 abatement, such as those present in CMV.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Feb 11, 2016

There are no references for this article.