Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Schmutz (1993)
Reimann surfaces with shortest geodesic of maximal lengthGeometric & Functional Analysis GAFA, 3
H. Iwaniec (2002)
Spectral methods of automorphic forms
Y. Safarov (2000)
Fourier Tauberian Theorems and ApplicationsJournal of Functional Analysis, 185
T. Betcke, L. Trefethen (2005)
Reviving the Method of Particular SolutionsSIAM Rev., 47
M. Pollicott, André Rocha (1997)
A remarkable formula for the determinant of the LaplacianInventiones mathematicae, 130
G. Phillips, P. Taylor (1976)
Theory and applications of numerical analysisThe Mathematical Gazette, 60
A.R. Booker, A. Strömbergsson, A. Venkatesh (2006)
Effective computation of Maass cusp formsArt. ID, 71281
A. Booker, Andreas Strömbergsson, Akshay Venkatesh (2006)
Effective computation of Maass cusp formsInternational Mathematics Research Notices, 2006
Holger Ninnemann (1995)
GUTZWILLER’S OCTAGON AND THE TRIANGULAR BILLIARD T*(2,3,8) AS MODELS FOR THE QUANTIZATION OF CHAOTIC SYSTEMS BY SELBERG’S TRACE FORMULAInternational Journal of Modern Physics B, 09
P. Buser, R. Silhol (2005)
Some Remarks on the Uniformizing Function in Genus 2Geometriae Dedicata, 115
J. Marklof (2004)
Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology: Selberg's Trace Formula: An IntroductionarXiv: Spectral Theory
D. Borthwick (2010)
Sharp Geometric Upper Bounds on Resonances for Surfaces with Hyperbolic EndsAnalysis & PDE, 5
Dmitry Jakobson, M. Levitin, Nikolai Nadirashvili, Nilima Nigam, I. Polterovich (2005)
How large can the first eigenvalue be on a surface of genus twoInternational Mathematics Research Notices, 2005
P. Buser (1992)
Geometry and Spectra of Compact Riemann Surfaces
L. Petzold (1983)
Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential EquationsSiam Journal on Scientific and Statistical Computing, 4
L. Fox, P. Henrici, C. Moler (1967)
APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORSSIAM Journal on Numerical Analysis, 4
A. Barnett, Andrew Hassell (2010)
Boundary Quasi-Orthogonality and Sharp Inclusion Bounds for Large Dirichlet EigenvaluesSIAM J. Numer. Anal., 49
Aurich, Sieber, Steiner (1988)
Quantum chaos of the Hadamard-Gutzwiller model.Physical review letters, 61 5
Christian Klein, Christian Klein, A. Kokotov, D. Korotkin (2005)
Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfacesMathematische Zeitschrift, 261
D. Hejhal (1992)
Eigenvalues of the Laplacian for Hecke triangle groups, 97
B. Osgood, R. Phillips, P. Sarnak (1988)
Extremals of determinants of LaplaciansJournal of Functional Analysis, 80
R. Aurich, F. Steiner (1989)
Periodic-orbit sum rules for the Hadamard-Gutzwiller modelPhysica D: Nonlinear Phenomena, 39
L.R. Petzold (1983)
Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equationsSiam J. Sci. Stat. Comput. 4, 4
A. Barnett (2009)
Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet EigenvaluesSIAM J. Numer. Anal., 47
F. Steiner (1987)
On Selberg's zeta function for compact Riemann surfacesPhysics Letters B, 188
F. Jenni (1984)
Ueber den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher FlächenCommentarii Mathematici Helvetici, 59
R. Aurich, F. Steiner (1988)
On the periodic orbits of a strongly chaotic systemPhysica D: Nonlinear Phenomena, 32
A. Barnett, T. Betcke (2010)
An Exponentially Convergent Nonpolynomial Finite Element Method for Time-Harmonic Scattering from PolygonsSIAM J. Sci. Comput., 32
Charlie Harper (2005)
Partial Differential EquationsMultivariable Calculus with Mathematica
R. Aurich, F. Steiner (1992)
From classical periodic orbits to the quantization of chaosProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 437
C. Moler, L. Payne (1968)
Bounds for Eigenvalues and Eigenvectors of Symmetric OperatorsSIAM Journal on Numerical Analysis, 5
D. Hejhal (1999)
On Eigenfunctions of the Laplacian for Hecke Triangle Groups
R. Aurich, F. Steiner (1993)
Statistical properties of highly excited quantum eigenstates of a strongly chaotic systemPhysica D: Nonlinear Phenomena, 64
(1983)
ODEPACK, a systematized collection of ODE solvers, in scientific computing
Aline Aigon-Dupuy, P. Buser, M. Cibils, A. Künzle, F. Steiner (2005)
Hyperbolic octagons and Teichmüller space in genus 2Journal of Mathematical Physics, 46
P. Schmutz (1994)
Systoles on Riemann surfacesmanuscripta mathematica, 85
David Fried (1986)
Analytic torsion and closed geodesics on hyperbolic manifoldsInventiones mathematicae, 84
T. Betcke (2006)
A GSVD formulation of a domain decomposition method for planar eigenvalue problemsIma Journal of Numerical Analysis, 27
We present a rigorous scheme that makes it possible to compute eigenvalues of the Laplace operator on hyperbolic surfaces within a given precision. The method is based on an adaptation of the method of particular solutions to the case of locally symmetric spaces and on explicit estimates for the approximation of eigenfunctions on hyperbolic surfaces by certain basis functions. It can be applied to check whether or not there is an eigenvalue in an ε-neighborhood of a given number λ > 0. This makes it possible to find all the eigenvalues in a specified interval, up to a given precision with rigorous error estimates. The method converges exponentially fast with the number of basis functions used. Combining the knowledge of the eigenvalues with the Selberg trace formula we are able to compute values and derivatives of the spectral zeta function again with error bounds. As an example we calculate the spectral determinant and the Casimir energy of the Bolza surface and other surfaces.
Communications in Mathematical Physics – Springer Journals
Published: Aug 30, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.