Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells.

Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers... The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Chemical Society Pubmed

Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells.

Journal of the American Chemical Society , Volume 134 (24): -10061 – Oct 15, 2012

Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells.


Abstract

The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells.

Loading next page...
 
/lp/pubmed/systematic-investigation-of-benzodithiophene-and-diketopyrrolopyrrole-6thg681U2d

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0002-7863
eISSN
1520-5126
DOI
10.1021/ja301460s
pmid
22640170

Abstract

The tandem solar cell architecture is an effective way to harvest a broader part of the solar spectrum and make better use of the photonic energy than the single junction cell. Here, we present the design, synthesis, and characterization of a series of new low bandgap polymers specifically for tandem polymer solar cells. These polymers have a backbone based on the benzodithiophene (BDT) and diketopyrrolopyrrole (DPP) units. Alkylthienyl and alkylphenyl moieties were incorporated onto the BDT unit to form BDTT and BDTP units, respectively; a furan moiety was incorporated onto the DPP unit in place of thiophene to form the FDPP unit. Low bandgap polymers (bandgap = 1.4-1.5 eV) were prepared using BDTT, BDTP, FDPP, and DPP units via Stille-coupling polymerization. These structural modifications lead to polymers with different optical, electrochemical, and electronic properties. Single junction solar cells were fabricated, and the polymer:PC(71)BM active layer morphology was optimized by adding 1,8-diiodooctane (DIO) as an additive. In the single-layer photovoltaic device, they showed power conversion efficiencies (PCEs) of 3-6%. When the polymers were applied in tandem solar cells, PCEs over 8% were reached, demonstrating their great potential for high efficiency tandem polymer solar cells.

Journal

Journal of the American Chemical SocietyPubmed

Published: Oct 15, 2012

There are no references for this article.