Access the full text.
Sign up today, get DeepDyve free for 14 days.
Jeom‐Soo Kim, Christopher Johnson, J. Vaughey, M. Thackeray, S. Hackney, W. Yoon, C. Grey (2004)
Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3)Chemistry of Materials, 16
M. Richard, E. Fuller, J. Dahn (1994)
The effect of ammonia reduction on the spinel electrode materials, LiMn2O4 and Li(Li1/3Mn5/3)O4Solid State Ionics, 73
Y. Shao-horn, S. Hackney, A. Armstrong, P. Bruce, R. Gitzendanner, Christopher Johnson, M. Thackeray (1999)
Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice ImagingJournal of The Electrochemical Society, 146
M. Thackeray (1997)
A Comment on the Structure of Thin‐Film LiMn2 O 4 ElectrodesJournal of The Electrochemical Society, 144
S. Bach, J. Pereira‐Ramos, N. Baffier (1996)
Rechargeable 3 V Li Cells Using Hydrated Lamellar Manganese OxideJournal of The Electrochemical Society, 143
M. Thackeray, W. David, P. Bruce, J. Goodenough (1983)
Lithium insertion into manganese spinelsMaterials Research Bulletin, 18
M. Thackeray, J. Vaughey, Christopher Johnson, A. Kropf, R. Benedek, L. Fransson, K. Edström (2003)
Structural considerations of intermetallic electrodes for lithium batteriesJournal of Power Sources, 113
Y. Paik, C. Grey, Christopher Johnson, Jeom‐Soo Kim, M. Thackeray (2002)
Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese OxidesChemistry of Materials, 14
K. Mizushima, P. Jones, P. Wiseman, J. Goodenough (1980)
LixCoO2 (0Materials Research Bulletin, 15
Rongji Chen, P. Zavalij, M. Whittingham (1996)
Hydrothermal Synthesis and Characterization of KxMnO2·yH2OChemistry of Materials, 8
J. Reed, G. Ceder, Anton Ven (2001)
Layered-to-Spinel Phase Transition in Li x MnO2Electrochemical and Solid State Letters, 4
Zhonghua Lu, Zhaohui Chen, J. Dahn (2003)
Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1)Chemistry of Materials, 15
Shengbo Zhang, K. Xu, J. Allen, T. Jow (2002)
Effect of propylene carbonate on the low temperature performance of Li-ion cellsJournal of Power Sources, 110
A. Armstrong, P. Bruce (1996)
Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteriesNature, 381
W. Yoon, M. Balasubramanian, Xiao‐Qing Yang, Zugen Fu, D. Fischer, J. Mcbreen (2004)
Soft X-Ray Absorption Spectroscopic Study of a LiNi0.5Mn0.5 O 2 Cathode during ChargeJournal of The Electrochemical Society, 151
Zhonghua Lu, D. MacNeil, J. Dahn (2001)
Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion BatteriesElectrochemical and Solid State Letters, 4
A. Robertson, P. Bruce (2003)
Mechanism of Electrochemical Activity in Li2MnO3Chemistry of Materials, 15
K. Numata, S. Yamanaka (1999)
Preparation and electrochemical properties of layered lithium–cobalt–manganese oxidesSolid State Ionics, 118
Y. Chabre, J. Pannetier (1995)
Structural and electrochemical properties of the proton / γ-MnO2 systemProgress in Solid State Chemistry, 23
A. Padhi, K. Nanjundaswamy, J. Goodenough (1997)
Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium BatteriesJournal of The Electrochemical Society, 144
Weiping Tang, H. Kanoh, Andrew Yang, K. Ooi (2000)
Preparation of plate-form manganese oxide by selective lithium extraction from monoclinic Li2MnO3 under hydrothermal conditionsChemistry of Materials, 12
M. Rossouw, M. Thackeray (1991)
Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applicationsMaterials Research Bulletin, 26
M. Thackeray, M. Mansuetto, C. Johnson (1996)
Thermal Stability of Li4Mn5O12Electrodes for Lithium BatteriesIEEE Journal of Solid-state Circuits, 125
M. Thackeray, Y. Shao-horn, A. Kahaian, K. Kepler, E. Skinner, J. Vaughey, Stephen Hackneyb (1999)
Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 CellsElectrochemical and Solid State Letters, 1
Lianqi Zhang, H. Noguchi, M. Yoshio (2002)
Synthesis and electrochemical properties of layered Li–Ni–Mn–O compoundsJournal of Power Sources, 110
MH Rossouw, A. Kock, LA Picciotto, Mm Thackeray, Wif David, RM Ibberson (1990)
Structural aspects of lithium-manganese-oxide electrodes for rechargeable lithium batteriesMaterials Research Bulletin, 25
Zhonghua Lu, L. Beaulieu, R. Donaberger, C. Thomas, J. Dahn (2002)
Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2Journal of The Electrochemical Society, 149
A. Robertson, A. Armstrong, P. Bruce (2001)
Layered LixMn1-yCoyO2 Intercalation ElectrodesInfluence of Ion Exchange on Capacity and Structure upon CyclingChemistry of Materials, 13
Christopher Johnson, J. Kim, Christina Lefief, Naichao Li, J. Vaughey, M. Thackeray (2004)
The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodesElectrochemistry Communications, 6
Christopher Johnson, Jeom‐Soo Kim, A. Kropf, A. Kahaian, J. Vaughey, L. Fransson, K. Edström, M. Thackeray (2003)
Structural Characterization of Layered LixNi0.5Mn0.5O2 (0 < x ≤ 2) Oxide Electrodes for Li BatteriesChemistry of Materials, 15
M. Balasubramanian, J. Mcbreen, I. Davidson, P. Whitfield, I. Kargina (2002)
In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode MaterialJournal of The Electrochemical Society, 149
P. Kalyani, S. Chitra, T. Mohan, S. Gopukumar (1999)
Lithium metal rechargeable cells using Li2MnO3 as the positive electrodeJournal of Power Sources, 80
R. Gummow, A. Kock, M. Thackeray (1994)
Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cellsSolid State Ionics, 69
M. Thackeray, A. Kock, M. Rossouw, D. Liles, R. Bittihn, D. Hoge (1992)
Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery ApplicationsJournal of The Electrochemical Society, 139
M. Rossouw, D. Liles, M. Thackeray (1993)
Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2IEEE Journal of Solid-state Circuits, 104
Y. Park, Min Kim, Young-Sik Hong, Xianglan Wu, K. Ryu, S. Chang (2003)
Electrochemical behavior of Li intercalation processes into a Li[NixLi (1/3 - 2x/3)Mn(2/3 - x/3)]O2 cathodeSolid State Communications, 127
B. Ammundsen, J. Paulsen, I. Davidson, Ru‐Shi Liu, C. Shen, Jin‐Ming Chen, L. Jang, Jyhfu Lee (2002)
Local Structure and First Cycle Redox Mechanism of Layered Li 1.2 Cr 0.4 Mn 0.4 O 2 Cathode MaterialJournal of The Electrochemical Society, 149
J. Dahn (1990)
Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structureSolid State Ionics, 44
M. Spahr, P. Novák, Bernhard Schnyder, O. Haas, R. Nesper (1998)
Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode MaterialsJournal of The Electrochemical Society, 145
J. Hunter (1981)
Preparation of a new crystal form of manganese dioxide: λ-MnO2Journal of Solid State Chemistry, 39
M. Thackeray (1997)
Manganese oxides for lithium batteriesProgress in Solid State Chemistry, 25
A. Yamada, Sai-Cheong Chung, K. Hinokuma (2001)
Optimized LiFePO4 for Lithium Battery CathodesJournal of The Electrochemical Society, 148
Q. Zhong, A. Bonakdarpour, Meijie Zhang, Yuan Gao, J. Dahn (1997)
Synthesis and Electrochemistry of LiNi x Mn2 − x O 4Journal of The Electrochemical Society, 144
Youngjoon Shin, A. Manthiram (2003)
Origin of the Capacity of Spinel LiMn2 − y Li y O 4 ± δ ( 0 ⩽ y ⩽ 0.15 ) in the 5 V RegionElectrochemical and Solid State Letters, 6
F. Capitaine, P. Gravereau, C. Delmas (1996)
A new variety of LiMnO2 with a layered structureSolid State Ionics, 89
Christopher Johnson, M. Mansuetto, M. Thackeray, Y. Shao-horn, S. Hackney (1997)
Stabilized alpha-MnO2 electrodes for rechargeable 3 V lithium batteriesJournal of The Electrochemical Society, 144
T. Ohzuku, Y. Makimura (2001)
Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion BatteriesChemistry Letters, 2001
(2004)
Local Structure and Cation Ordering in O3 Lithium Nickel Manganese Oxides with Stoichiometry Li [ Ni x Mn ( 2 − x ) / 3Li ( 1 − 2x ) / 3 ] O 2 NMR Studies and First Principles Calculations
Recent advances to develop manganese-rich electrodes derived from ‘composite’ structures in which a LiMnO(layered) component is structurally integrated with either a layered LiMO component or a spinel LiMO component, in which M is predominantly Mn and Ni, are reviewed. The electrodes, which can be represented in two-component notation as LiMnO·(1 −)LiMO and LiMnO·(1 −)LiMO, are activated by lithia (LiO) and/or lithium removal from the LiMnO, LiMO and LiMO components. The electrodes provide an initial capacity >250 mAh g when discharged between 5 and 2.0 V Li and a rechargeable capacity up to 250 mAh g over the same potential window. Electrochemical charge and discharge reactions are followed on compositional phase diagrams. The data bode well for the development and exploitation of high capacity electrodes for the next generation of lithium-ion batteries.
Journal of Materials Chemistry – Royal Society of Chemistry
Published: Jun 7, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.