Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Differential activation of transcription factors induced by Ca2+ response amplitude and duration

Differential activation of transcription factors induced by Ca2+ response amplitude and duration An increase in the intracellular calcium ion concentration ([Ca2+]i) controls a diverse range of cell functions, including adhesion, motility, gene expression and proliferation1,2. Calcium signalling patterns can occur as single transients, repetitive oscillations or sustained plateaux2,3, but it is not known whether these patterns are responsible for encoding the specificity of cellular responses. We report here that the amplitude and duration of calcium signals in B lymphocytes controls differential activation of the pro–inflammatory transcriptional regulators NF-κB, c-Jun N-terminal kinase (JNK) and NFAT. NF-κB and JNK are selectively activated by a large transient [Ca2+]i rise, whereas NFAT is activated by a low, sustained Ca2+ plateau. Differential activation results from differences in the Ca2+ sensitivities and kinetic behaviour of the three pathways. Our results show how downstream effectors can decode information contained in the amplitude and duration of Ca2+ signals, revealing a mechanism by which a multifunctional second messenger such as Ca2+ can achieve specificity in signalling to the nucleus. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

Differential activation of transcription factors induced by Ca2+ response amplitude and duration

Loading next page...
 
/lp/springer-journals/differential-activation-of-transcription-factors-induced-by-ca2-7y09m8tiVF

References (35)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Nature Publishing Group
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/386855a0
Publisher site
See Article on Publisher Site

Abstract

An increase in the intracellular calcium ion concentration ([Ca2+]i) controls a diverse range of cell functions, including adhesion, motility, gene expression and proliferation1,2. Calcium signalling patterns can occur as single transients, repetitive oscillations or sustained plateaux2,3, but it is not known whether these patterns are responsible for encoding the specificity of cellular responses. We report here that the amplitude and duration of calcium signals in B lymphocytes controls differential activation of the pro–inflammatory transcriptional regulators NF-κB, c-Jun N-terminal kinase (JNK) and NFAT. NF-κB and JNK are selectively activated by a large transient [Ca2+]i rise, whereas NFAT is activated by a low, sustained Ca2+ plateau. Differential activation results from differences in the Ca2+ sensitivities and kinetic behaviour of the three pathways. Our results show how downstream effectors can decode information contained in the amplitude and duration of Ca2+ signals, revealing a mechanism by which a multifunctional second messenger such as Ca2+ can achieve specificity in signalling to the nucleus.

Journal

NatureSpringer Journals

Published: Apr 24, 1997

There are no references for this article.