Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Smith, M. Mccully (1978)
A critical evaluation of the specificity of aniline blue induced fluorescenceProtoplasma, 95
Weiqing Zeng, K. Keegstra (2008)
AtCSLD2 is an integral Golgi membrane protein with its N-terminus facing the cytosolPlanta, 228
F. Dwivany, Dina Yulia, R. Burton, N. Shirley, S. Wilson, G. Fincher, A. Bacic, E. Newbigin, Monika Doblin (2009)
The CELLULOSE-SYNTHASE LIKE C (CSLC) family of barley includes members that are integral membrane proteins targeted to the plasma membrane.Molecular plant, 2 5
A. Bernal, J. Jensen, Jesper Harholt, S. Sørensen, I. Moller, C. Blaukopf, B. Johansen, Robert Lotto, M. Pauly, H. Scheller, W. Willats (2007)
Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis.The Plant journal : for cell and molecular biology, 52 5
J. Verbelen, D. Stickens (1995)
In vivo determination of fibril orientation in plant cell walls with polarization CSLMJournal of Microscopy, 177
L. Dolan, C. Duckett, C. Grierson, P. Linstead, K. Schneider, Emily Lawson, C. Dean, S. Poethig, K. Roberts (1994)
Clonal relationships and cell patterning in the root epidermis of ArabidopsisDevelopment, 120
P. Wood (1980)
Specificity in the interaction of direct dyes with polysaccharidesCarbohydrate Research, 85
Yong Lee, Zhenbiao Yang (2008)
Tip growth: signaling in the apical dome.Current opinion in plant biology, 11 6
P. Scherp, R. Grotha, U. Kutschera (2001)
Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plantsPlant Cell Reports, 20
Stefano Ramat, Leigh John, S. David, Zee, M. Lance, Optican (2000)
RESEARCH ARTICLES
G. Freshour, Christopher Bonin, W. Reiter, P. Albersheim, A. Darvill, M. Hahn (2003)
Distribution of Fucose-Containing Xyloglucans in Cell Walls of the mur1 Mutant of Arabidopsis1Plant Physiology, 131
Olivier Lerouxel, David Cavalier, A. Liepman, K. Keegstra (2006)
Biosynthesis of plant cell wall polysaccharides - a complex process.Current opinion in plant biology, 9 6
G. Freshour, R. Clay, Melvin Fuller, P. Albersheim, A. Darvill, Michael Hahn (1996)
Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots, 110
Chris Somerville, Chris Somerville, Stefan Bauer, Ginger Brininstool, M. Facette, M. Facette, Thorsten Hamann, J. Milne, Erin Osborne, A. Paredez, Alexander Paredez, Staffan Persson, T. Raab, Sonja Vorwerk, Heather Youngs, Heather Youngs (2004)
Toward a Systems Approach to Understanding Plant Cell WallsScience, 306
L. Enns, M. Kanaoka, K. Torii, L. Comai, K. Okada, R. Cleland (2005)
Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertilityPlant Molecular Biology, 58
Ajay Jain, M. Poling, A. Karthikeyan, J. Blakeslee, W. Peer, Boosaree Titapiwatanakun, A. Murphy, K. Raghothama (2007)
Differential Effects of Sucrose and Auxin on Localized Phosphate Deficiency-Induced Modulation of Different Traits of Root System Architecture in Arabidopsis1[C][W][OA]Plant Physiology, 144
Sunil Singh, U. Fischer, M. Singh, M. Grebe, A. Marchant (2008)
Insight into the early steps of root hair formation revealed by the procuste1 cellulose synthase mutant of Arabidopsis thalianaBMC Plant Biology, 8
Keiko Sugimoto, Richard Williamson, G. Wasteneys (2000)
New techniques enable comparative analysis of microtubule orientation, wall texture, and growth rate in intact roots of Arabidopsis.Plant physiology, 124 4
Neil Taylor (2008)
Cellulose biosynthesis and deposition in higher plants.The New phytologist, 178 2
U. Homann, T. Meckel, Jennifer Hewing, M. Hütt, A. Hurst (2007)
Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells.European journal of cell biology, 86 8
J. Dumais, S. Long, S. Shaw (2004)
The Mechanics of Surface Expansion Anisotropy in Medicago truncatula Root Hairs1Plant Physiology, 136
M. Galway, J. Masucci, A. Lloyd, V. Walbot, Ronald Davis, J. Schiefelbein (1994)
The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root.Developmental biology, 166 2
I. Manfield, C. Orfila, L. McCartney, Jesper Harholt, A. Bernal, H. Scheller, P. Gilmartin, J. Mikkelsen, J. Knox, W. Willats (2004)
Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis.The Plant journal : for cell and molecular biology, 40 2
M. Lijsebettens, R. Vanderhaeghen, M. Montagu (1991)
Insertional mutagenesis in Arabidopsis thaliana: isolation of a T-DNA-linked mutation that alters leaf morphologyTheoretical and Applied Genetics, 81
J. Schiefelbein, A. Shipley, Paul Rowse (1992)
Calcium influx at the tip of growing root-hair cells of Arabidopsis thalianaPlanta, 187
M. Sassen, J. Traas, A. Wolters‐Arts (1985)
Deposition of cellulose microfibrils in cell walls of root hairsEuropean Journal of Cell Biology, 37
Xuan Wang, G. Cnops, R. Vanderhaeghen, Sabine Block, M. Montagu, M. Lijsebettens (2001)
AtCSLD3, a cellulose synthase-like gene important for root hair growth in arabidopsis.Plant physiology, 126 2
B. Favery, Eoin Ryan, Julia Foreman, P. Linstead, K. Boudonck, M. Steer, P. Shaw, L. Dolan (2001)
KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis.Genes & development, 15 1
D. Belford, R. Preston (1961)
The Structure and Growth of Root HairsJournal of Experimental Botany, 12
N. Levina, I. Heath, R. Lew (2000)
Rapid wound responses ofSaprolegnia ferax hyphae depend upon actin and Ca2+-involving deposition of callose plugsProtoplasma, 214
R. Nims, R. Halliwell, D. Rosberg (1967)
Wound healing in cultured tobacco cells following microinjectionProtoplasma, 64
Catherine Gapper, L. Dolan (2006)
Control of Plant Development by Reactive Oxygen Species1Plant Physiology, 141
Xiaoyun Dong, Z. Hong, J. Chatterjee, Sunghan Kim, D. Verma (2008)
Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infectionPlanta, 229
T. Arioli, Liangcai Peng, A. Betzner, J. Burn, W. Wittke, W. Herth, C. Camilleri, Herman Höfte, J. Plazinski, R. Birch, Ann Cork, J. Glover, J. Redmond, R. Williamson (1998)
Molecular analysis of cellulose biosynthesis in Arabidopsis.Science, 279 5351
T. Bibikova, S. Gilroy (2002)
Root Hair DevelopmentJournal of Plant Growth Regulation, 21
D. Cosgrove (2005)
Growth of the plant cell wallNature Reviews Molecular Cell Biology, 6
H. Kazama, Haruka Dan, H. Imaseki, G. Wasteneys (2004)
Transient Exposure to Ethylene Stimulates Cell Division and Alters the Fate and Polarity of Hypocotyl Epidermal Cells1Plant Physiology, 134
S. Shaw, J. Dumais, S. Long (2000)
Cell surface expansion in polarly growing root hairs of Medicago truncatula.Plant physiology, 124 3
M. Galway (2006)
Root hair cell walls: filling in the frameworkThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology.Botany, 84
C. Anderson, Andrew Carroll, L. Akhmetova, C. Somerville (2009)
Real-Time Imaging of Cellulose Reorientation during Cell Wall Expansion in Arabidopsis Roots1[W][OA]Plant Physiology, 152
Liangcai Peng, Fan Xiang, Eric Roberts, Yasushi Kawagoe, L. Greve, Klaus Kreuz, D. Delmer (2001)
The experimental herbicide CGA 325'615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline beta-1,4-glucan associated with CesA protein.Plant physiology, 126 3
Seth Debolt, R. Gutierrez, D. Ehrhardt, C. Somerville (2007)
Nonmotile Cellulose Synthase Subunits Repeatedly Accumulate within Localized Regions at the Plasma Membrane in Arabidopsis Hypocotyl Cells following 2,6-Dichlorobenzonitrile Treatment1[W]Plant Physiology, 145
Monika Doblin, F. Pettolino, A. Bacic (2010)
Plant cell walls: the skeleton of the plant worldFunctional Plant Biology, 37
D. Galbraith (1981)
Microfluorimetric quantitation of cellulose biosynthesis by plant protoplasts using Calcofluor WhitePhysiologia Plantarum, 53
D. Verma, Z. Hong (2001)
Plant callose synthase complexesPlant Molecular Biology, 47
P. Moog, T. Kooij, W. Brüggemann, J. Schiefelbein, P. Kuiper (2004)
Responses to iron deficiency in Arabidopsis thaliana: The Turbo iron reductase does not depend on the formation of root hairs and transfer cellsPlanta, 195
T. Nühse, A. Stensballe, O. Jensen, S. Peck (2004)
Phosphoproteomics of the Arabidopsis Plasma Membrane and a New Phosphorylation Site Databasew⃞The Plant Cell Online, 16
AK Jacobs, V Lipka, RA Burton, R Panstruga, N Strizhov, P Schulze-Lefert, GB Fincher (2003)
An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formationPlant Cell, 15
G. Monshausen, T. Bibikova, M. Messerli, C. Shi, S. Gilroy (2007)
Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairsProceedings of the National Academy of Sciences, 104
Jean-Christophe Cocuron, Olivier Lerouxel, G. Drakakaki, A. Alonso, A. Liepman, K. Keegstra, N. Raikhel, C. Wilkerson (2007)
A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthaseProceedings of the National Academy of Sciences, 104
T. Richmond, C. Somerville (2001)
Integrative approaches to determining Csl functionPlant Molecular Biology, 47
Tomasz Czechowski, M. Stitt, T. Altmann, M. Udvardi, W. Scheible (2005)
Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis1[w]Plant Physiology, 139
A. Bernal, C. Yoo, M. Mutwil, J. Jensen, Guichuan Hou, C. Blaukopf, Iben Sørensen, E. Blancaflor, H. Scheller, W. Willats (2008)
Functional Analysis of the Cellulose Synthase-Like Genes CSLD1, CSLD2, and CSLD4 in Tip-Growing Arabidopsis Cells1[W]Plant Physiology, 148
C. Buer, J. Masle, G. Wasteneys (2000)
Growth conditions modulate root-wave phenotypes in Arabidopsis.Plant & cell physiology, 41 10
Haixin Xu, K. Mendgen (1994)
Endocytosis of 1,3-β-glucans by broad bean cells at the penetration site of the cowpea rust fungus (haploid stage)Planta, 195
ME Galway (2006)
Root hair cell walls: filling in the frameworkCan J Bot, 84
L. Dolan, J. Davies (2004)
Cell expansion in roots.Current opinion in plant biology, 7 1
David Cavalier, Olivier Lerouxel, L. Neumetzler, Kazuchika Yamauchi, A. Reinecke, G. Freshour, O. Zabotina, M. Hahn, I. Burgert, M. Pauly, N. Raikhel, K. Keegstra (2008)
Disrupting Two Arabidopsis thaliana Xylosyltransferase Genes Results in Plants Deficient in Xyloglucan, a Major Primary Cell Wall Component[W][OA]The Plant Cell Online, 20
J. Schiefelbein, C. Somerville (1990)
Genetic Control of Root Hair Development in Arabidopsis thaliana.The Plant cell, 2
T. Desprez, M. Juraniec, Elizabeth Crowell, Hélène Jouy, Žaneta Pochylová, F. Parcy, H. Höfte, M. Gonneau, S. Vernhettes (2007)
Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thalianaProceedings of the National Academy of Sciences, 104
T. Dunkley, Svenja Hester, I. Shadforth, J. Runions, Thilo Weimar, S. Hanton, J. Griffin, C. Bessant, F. Brandizzi, C. Hawes, Rod Watson, P. Dupree, K. Lilley (2006)
Mapping the Arabidopsis organelle proteome.Proceedings of the National Academy of Sciences of the United States of America, 103 17
M. Galway, D Lane, J Schiefelbein (1999)
Defective control of growth rate and cell diameter in tip-growing root hairs of the rhd4 mutant of Arabidopsis thalianaBotany, 77
The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.
Planta – Springer Journals
Published: Jan 29, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.