Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Viskochil, A. Buchberg, Gangfeng Xu, R. Cawthon, Jeffrey Stevens, R. Wolff, M. Culver, J. Carey, N. Copeland, N. Jenkins, Raymond White, P. O'Connell (1990)
Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locusCell, 62
U. Fuchs, G. Rehkamp, O. Haas, R. Slany, M. König, S. Bojesen, R. Bohle, C. Damm-Welk, W. Ludwig, J. Harbott, A. Borkhardt (2001)
The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemiaProceedings of the National Academy of Sciences of the United States of America, 98
S. Noto, T. Maeda, S. Hattori, J. Inazawa, M. Imamura, M. Asaka, M. Hatakeyama (1998)
A novel human RasGAP‐like gene that maps within the prostate cancer susceptibility locus at chromosome 1q25FEBS Letters, 441
T. Taki, H. Kano, M. Taniwaki, M. Sako, M. Yanagisawa, Y. Hayashi (1999)
AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23).Proceedings of the National Academy of Sciences of the United States of America, 96 25
M. Rebecchi, S. Scarlata (1998)
Pleckstrin homology domains: a common fold with diverse functions.Annual review of biophysics and biomolecular structure, 27
Wenyan Miao, L. Eichelberger, L. Baker, M. Marshall (1996)
p120 Ras GTPase-activating Protein Interacts with Ras-GTP through Specific Conserved Residues*The Journal of Biological Chemistry, 271
Y. Gu, H. Alder, T. Nakamura, S. Schichman, R. Prasad, O. Canaani, H. Saito, C. Croce, E. Canaani (1994)
Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia.Cancer research, 54 9
Pamela Strissel, Reiner Strick, Janet Rowley, N. Zeleznik-Le (1998)
An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region.Blood, 92 10
M. García-Cuéllar, S. Schreiner, M. Birke, M. Hamacher, G. Fey, R. Slany (2000)
ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11)+Oncogene, 19
G. Shaw (1996)
The pleckstrin homology domain: An intriguing multifunctional protein moduleBioEssays, 18
Tatsuro Joh, Kazuhito Yamamoto, Y. Kagami, Harumi Kakuda, Takeyuki Sato, Takaharu Yamamoto, Toshitada Takahashi, R. Ueda, K. Kaibuchi, M. Seto (1997)
Chimeric MLL products with a Ras binding cytoplasmic protein AF6 involved in t(6;11) (q27;q23) leukemia localize in the nucleusOncogene, 15
A. Bergh, B. Emanuel, S. Zelderen‐Bhola, T. Smetsers, R. Soest, M. Stul, H. Vranckx, E. Schuuring, A. Hagemeijer, P. Kluin (2000)
A DNA probe combination for improved detection of MLL/11q23 breakpoints by double‐color interphase‐FISH in acute leukemiasGenes, 28
R. Cawthon, P. O'Connell, A. Buchberg, D. Viskochil, R. Weiss, M. Culver, J. Stevens, N. Jenkins, N. Copeland, R. White (1990)
Identification and characterization of transcripts from the neurofibromatosis 1 region: the sequence and genomic structure of EVI2 and mapping of other transcripts.Genomics, 7 4
N. Kashige, N. Carpino, R. Kobayashi (2000)
Tyrosine phosphorylation of p62dok by p210bcr-abl inhibits RasGAP activity.Proceedings of the National Academy of Sciences of the United States of America, 97 5
J. Drugan, K. Rogers-Graham, T. Gilmer, S. Campbell, G. Clark (2000)
The Ras/p120 GTPase-activating Protein (GAP) Interaction Is Regulated by the p120 GAP Pleckstrin Homology Domain*The Journal of Biological Chemistry, 275
Chi Wai So, Carlos Caldas, Meng-Min Liu, SJ Chen, Q. Huang, Long-Jun Gu, Mai Sham, Leanne Wiedemann, Li Chong Chan (1997)
EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia.Proceedings of the National Academy of Sciences of the United States of America, 94 6
X. Sheng, M. Kawamura, H. Ohnishi, K. Ida, R. Hanada, S. Kojima, M. Kobayashi, F. Bessho, M. Yanagisawa, Y. Hayashi (1997)
Mutations of the RAS genes in childhood acute myeloid leukemia, myelodysplastic syndrome and juvenile chronic myelocytic leukemia.Leukemia research, 21 8
M. Wilke, H. Dolstra, F. Maas, J. Pool, R. Brouwer, J. Falkenburg, A. Rebello, F. Lamers, E. Schuuring, P. Kluin, F. Brasseur, E. Goulmy (2003)
Quantification of the HA-1 gene product at the RNA level; relevance for immunotherapy of hematological malignancies.The hematology journal : the official journal of the European Haematology Association, 4 5
Hong Chen, R. Pong, Zhi Wang, J. Hsieh (2002)
Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization.Genomics, 79 4
P. Romero, A. Colombatti (1995)
The first intron of the BCR gene contains two minor alternative exons.Leukemia research, 19 12
D. Lu, R. Nounou, M. Beran, E. Estey, T. Manshouri, H. Kantarjian, M. Keating, M. Albitar (2003)
The prognostic significance of bone marrow levels of neurofibromatosis‐1 protein and ras oncogene mutations in patients with acute myeloid leukemia and myelodysplastic syndromeCancer, 97
Y. Wang, M. Boguski, M. Riggs, L. Rodgers, M. Wigler (1991)
sar1, a gene from Schizosaccharomyces pombe encoding a protein that regulates ras1.Cell regulation, 2 6
Takaharu Yamamoto, T. Matsui, M. Nakafuku, A. Iwamatsu, K. Kaibuchi (1995)
A Novel GTPase-activating Protein for R-Ras (*)The Journal of Biological Chemistry, 270
P. Kourlas, M. Strout, B. Becknell, M. Veronese, C. Croce, K. Theil, R. Krahe, T. Ruutu, S. Knuutila, C. Bloomfield, M. Caligiuri (2000)
Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia.Proceedings of the National Academy of Sciences of the United States of America, 97 5
M. Ahmadian, P. Stege, K. Scheffzek, A. Wittinghofer (1997)
Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of RasNature Structural Biology, 4
A. Bergh, H. Beverloo, P. Rombout, E. Wering, M. Weel, G. Beverstock, P. Kluin, R. Slater, E. Schuuring (2002)
LAF4, an AF4‐related gene, is fused to MLL in infant acute lymphoblastic leukemiaGenes, 35
A. Pendergast, L. Quilliam, L. Cripe, C. Bassing, Z. Dai, Nanxin Li, A. Batzer, K. Rabun, C. Der, J. Schlessinger, M. Gishizky (1993)
BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor proteinCell, 75
Zhi Wang, C. Tseng, R. Pong, Hong Chen, J. Mcconnell, N. Navone, J. Hsieh (2002)
The Mechanism of Growth-inhibitory Effect of DOC-2/DAB2 in Prostate CancerThe Journal of Biological Chemistry, 277
B. Boettner, E. Govek, J. Cross, L. Aelst (2000)
The junctional multidomain protein AF-6 is a binding partner of the Rap1A GTPase and associates with the actin cytoskeletal regulator profilin.Proceedings of the National Academy of Sciences of the United States of America, 97 16
C. So, C. So, N. Cheung, S. Chew, M. Sham, L. Chan (2000)
The interaction between EEN and Abi-1, two MLLfusion partners, and synaptojanin and dynamin: implications for leukaemogenesisLeukemia, 14
S. Li, H. Satoh, T. Watanabe, S. Nakamura, S. Hattori (1996)
cDNA cloning and chromosomal mapping of a novel human GAP (GAP1M), a GTPase-activating protein of Ras.Genomics, 35 3
I. Nilson, K. Löchner, G. Siegler, Johann Greil, Jörn Beck, Georg Fey, Rolf Marschalek (1996)
Exon/intron structure of the human ALL‐1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemiasBritish Journal of Haematology, 93
P. Cullen, J. Hsuan, O. Truong, A. Letcher, T. Jackson, A. Dawson, R. Irvine (1995)
Identification of a specific lns(l,3,4,5)P4-binding protein as a member of the GAP1 familyNature, 376
(2002)
The mechanism of growth - inhibitory effect of DOC - 2 / DAB 2 in prostate cancer . Characterization of a novel GTPase - activating protein associated with N - terminal domain of DOC - 2 / DAB 2
R. Slany, C. Lavau, M. Cleary (1998)
The Oncogenic Capacity of HRX-ENL Requires the Transcriptional Transactivation Activity of ENL and the DNA Binding Motifs of HRXMolecular and Cellular Biology, 18
N. Mahgoub, R. Parker, M. Hosler, Pamelyn Close, N. Winick, M. Masterson, K. Shannon, C. Felix (1998)
RAS mutations in pediatric leukemias with MLL gene rearrangementsGenes, 21
R. Repp, Arndt Borkhardt, E. Haupt, J. Kreuder, S. Brettreich, J. Hammermann, K. Nishida, Jochen Harbott, F. Lampert (1995)
Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis.Leukemia, 9 1
J. Corral, I. Lavenir, H. Impey, A. Warren, A. Forster, T. Larson, S. Bell, A. McKenzie, G. King, T. Rabbitts (1996)
An Mll–AF9 Fusion Gene Made by Homologous Recombination Causes Acute Leukemia in Chimeric Mice: A Method to Create Fusion OncogenesCell, 85
A. Borkhardt, S. Bojesen, O. Haas, U. Fuchs, Dominique Bartelheimer, I. Loncarevic, R. Bohle, J. Harbott, R. Repp, U. Jaeger, S. Viehmann, T. Henn, P. Korth, D. Scharr, F. Lampert (2000)
The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q.Proceedings of the National Academy of Sciences of the United States of America, 97 16
Peter Domer, Steven Fakharzadeh, Chein-Shing Chen, J. Jockel, Lisa Johansen, Gary Silverman, J.H. Kersey, S. Korsmeyer (1993)
Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product.Proceedings of the National Academy of Sciences of the United States of America, 90 16
E. Schuuring, H. Damme, Ellen Schuuring-Scholtes, E. Verhoeven, R. Michalides, E. Geelen, C. Boer, Herbert Brok, Vera Buuren, P. Kluin (1998)
Characterization of the EMS1 gene and its product, human Cortactin.Cell adhesion and communication, 6 2-3
The t(9;11) has been described in patients with acute myeloid leukemia (AML), and two genes (AF9 (at 9p21) and FBP17 (at 9q34)) have been cloned as fusion partners of the MLL gene. From an AML‐M5 with a t(9;11)(q34;q23), we identified a novel MLL fusion partner, AF9Q34. The AF9Q34 protein shows high homology with nGAP, a RAS GTPase‐activating protein (RASGAP), and contains the highly conserved GRD and FLR motifs characteristic of RASGAPs. Recently, the rat homologue (DAB2IP) also was identified and reported to act as a RASGAP both in vivo and in vitro. RASGAPs negatively regulate the activity of RAS proteins that modulate diverse cellular processes by cycling between an inactive GDP‐bound and an active GTP‐bound state. In addition, the NH2 terminus harbors an amino acid stretch with homology to the pleckstrin homology (PH) domain implicated in regulating the interaction between RAS and the catalytic domain of RASGAP. As a result of the breakpoint in the AF9Q34–MLL fusion protein, this PH domain is disrupted. This suggests that because of the translocation, the normal function of the AF9Q34 gene is aborted. Thus, AF9Q34 encodes a novel RASGAP gene that appears to be deregulated as a result of the translocation. The identification of this RASGAP protein in a novel MLL fusion implies that an indirect RAS‐deregulating mechanism could be involved in leukemic transformation. © 2004 Wiley‐Liss, Inc.
Genes, Chromosomes and Cancer – Wiley
Published: Apr 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.