Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Williamson, P. Lund, H. Krebs (1967)
The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.The Biochemical journal, 103 2
Masatoshi Inoue, Atsuya Takeuchi, Shin-ichiro Horigane, Masamichi Ohkura, K. Gengyo-Ando, Hajime Fujii, Satoshi Kamijo, S. Takemoto-Kimura, M. Kano, J. Nakai, K. Kitamura, H. Bito (2014)
Rational design of a high-affinity, fast, red calcium indicator R-CaMP2Nature Methods, 12
Human lung cancer cells (NCI-H1299)~29.6~96
Hongying Yang, Tianle Yang, J. Baur, E. Perez, T. Matsui, J. Carmona, Dudley Lamming, N. Souza-Pinto, V. Bohr, A. Rosenzweig, R. Cabo, A. Sauve, D. Sinclair (2007)
Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell SurvivalCell, 130
K. Kasischke, Harshad Vishwasrao, P. Fisher, W. Zipfel, W. Webb (2004)
Neural Activity Triggers Neuronal Oxidative Metabolism Followed by Astrocytic GlycolysisScience, 305
A. Martín, Sebastiá Ceballo, F. Baeza-Lehnert, R. Lerchundi, R. Valdebenito, Y. Contreras-Baeza, K. Alegría, L. Barros, Karl-Wilhelm Koch (2014)
Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for PyruvatePLoS ONE, 9
K. Eto, Y. Tsubamoto, Y. Terauchi, T. Sugiyama, T. Kishimoto, N. Takahashi, Naoko Yamauchi, N. Kubota, Shigeo Murayama, Toru Aizawa, Y. Akanuma, Shinichi Aizawa, H. Kasai, Y. Yazaki, T. Kadowaki (1999)
Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion.Science, 283 5404
Su-Ju Lin, L. Guarente (2003)
Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease.Current opinion in cell biology, 15 2
Y. Hung, J. Albeck, M. Tantama, G. Yellen (2011)
Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor.Cell metabolism, 14 4
K. Gruenwald, J. Holland, V. Stromberg, Altaf Ahmad, Daisy Watcharakichkorn, Sakiko Okumoto (2012)
Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine SensorsPLoS ONE, 7
Karen Deuschle, B. Chaudhuri, Sakiko Okumoto, I. Lager, S. Lalonde, W. Frommer (2006)
Rapid Metabolism of Glucose Detected with FRET Glucose Nanosensors in Epidermal Cells and Intact Roots of Arabidopsis RNA-Silencing Mutants[W][OA]The Plant Cell Online, 18
Mireia Garriga-Canut, B. Schoenike, R. Qazi, K. Bergendahl, Timothy Daley, Rebecca Pfender, J. Morrison, J. Ockuly, C. Stafstrom, T. Sutula, A. Roopra (2006)
2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP–dependent metabolic regulation of chromatin structureNature Neuroscience, 9
M. Tantama, Y. Hung, G. Yellen (2011)
Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.Journal of the American Chemical Society, 133 26
R. Hynes (1992)
Integrins: Versatility, modulation, and signaling in cell adhesionCell, 69
C. Cantó, Z. Gerhart-Hines, J. Feige, Marie Lagouge, L. Noriega, J. Milne, P. Elliott, P. Puigserver, J. Auwerx (2009)
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activityNature, 458
Qianru Yu, A. Heikal (2009)
Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.Journal of photochemistry and photobiology. B, Biology, 95 1
Smita Gyan, Y. Shiohira, Ichiro Sato, M. Takeuchi, Tsutomu Sato (2006)
Regulatory Loop between Redox Sensing of the NADH/NAD+ Ratio by Rex (YdiH) and Oxidation of NADH by NADH Dehydrogenase Ndh in Bacillus subtilisJournal of Bacteriology, 188
J. Berg, Y. Hung, G. Yellen (2008)
A genetically encoded fluorescent reporter of ATP/ADP ratioNature methods, 6
Yuzheng Zhao, Yi Yang (2015)
Profiling metabolic states with genetically encoded fluorescent biosensors for NADH.Current opinion in biotechnology, 31
Chang Zhang, Zi-Han Wei, B. Ye (2013)
Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensorApplied Microbiology and Biotechnology, 97
Yuzheng Zhao, Q. Hu, F. Cheng, Ni Su, Aoxue Wang, Yejun Zou, Hanyang Hu, Xianjun Chen, Hai-Meng Zhou, Xin-zhi Huang, Kai Yang, Qian Zhu, Xue Wang, Jing Yi, Linyong Zhu, X. Qian, Lixin Chen, Yun Tang, J. Loscalzo, Yi Yang (2015)
SoNar, a Highly Responsive NAD+/NADH Sensor, Allows High-Throughput Metabolic Screening of Anti-tumor Agents.Cell metabolism, 21 5
K. McLaughlin, C. Strain-Damerell, Kefang Xie, D. Brekasis, A. Soares, M. Paget, C. Kielkopf (2010)
Structural basis for NADH/NAD+ redox sensing by a Rex family repressor.Molecular cell, 38 4
D. Brekasis, M. Paget (2003)
A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2)The EMBO Journal, 22
Takeharu Nagai, A. Sawano, Eun Park, Atsushi Miyawaki (2001)
Circularly permuted green fluorescent proteins engineered to sense Ca2+Proceedings of the National Academy of Sciences of the United States of America, 98
Kazuo Yamada, N. Hara, T. Shibata, H. Osago, M. Tsuchiya (2006)
The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry.Analytical biochemistry, 352 2
J. Rutter, M. Reick, Leeju Wu, S. McKnight (2001)
Regulation of Clock and NPAS2 DNA Binding by the Redox State of NAD CofactorsScience, 293
G. Baird, D. Zacharias, R. Tsien (1999)
Circular permutation and receptor insertion within green fluorescent proteins.Proceedings of the National Academy of Sciences of the United States of America, 96 20
J. Cedarbaum (2004)
SurvivalAmyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 5
A. Mayevsky, G. Rogatsky (2007)
Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies.American Journal of Physiology-cell Physiology, 292
Yuzheng Zhao, Jing Jin, Q. Hu, Hai-Meng Zhou, Jing Yi, Zhenhang Yu, Lei Xu, Xue Wang, Yi Yang, J. Loscalzo (2011)
Genetically encoded fluorescent sensors for intracellular NADH detection.Cell metabolism, 14 4
W. Ying (2008)
NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.Antioxidants & redox signaling, 10 2
M. Mohsin, M. Abdin, Lata Nischal, Hemant Kardam, Altaf Ahmad (2013)
Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.Biosensors & bioelectronics, 50
H. Imamura, K. Nhat, H. Togawa, Kenta Saito, R. Iino, Y. Kato-Yamada, T. Nagai, H. Noji (2009)
Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicatorsProceedings of the National Academy of Sciences, 106
Jinyong Luo, Z. Deng, Xiaoji Luo, Ni Tang, Wen Song, Jin Chen, K. Sharff, H. Luu, R. Haydon, K. Kinzler, B. Vogelstein, T. He (2007)
A protocol for rapid generation of recombinant adenoviruses using the AdEasy systemNature Protocols, 2
Qinghong Zhang, Su Wang, A. Nottke, J. Rocheleau, D. Piston, R. Goodman (2006)
Redox sensor CtBP mediates hypoxia-induced tumor cell migration.Proceedings of the National Academy of Sciences of the United States of America, 103 24
Qinghong Zhang, D. Piston, R. Goodman (2002)
Regulation of Corepressor Function by Nuclear NADHScience, 295
T. Blacker, Z. Mann, J. Gale, M. Ziegler, A. Bain, G. Szabadkai, M. Duchen (2014)
Separating NADH and NADPH fluorescence in live cells and tissues using FLIMNature Communications, 5
M. Fehr, S. Lalonde, I. Lager, M. Wolff, W. Frommer (2003)
In Vivo Imaging of the Dynamics of Glucose Uptake in the Cytosol of COS-7 Cells by Fluorescent Nanosensors*Journal of Biological Chemistry, 278
H. Takanaga, B. Chaudhuri, W. Frommer (2008)
GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor.Biochimica et biophysica acta, 1778 4
W. Ying (2007)
NAD+ and NADH in brain functions, brain diseases and brain aging.Frontiers in bioscience : a journal and virtual library, 12
Hiroshi Ohrui (2018)
EFdA: A very excellent anti-HIV modified nucleosides: From design to the current results of clinical trialsVirology & Mycology, 07
R. Veech, L. Eggleston, H. Krebs (1969)
The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver.The Biochemical journal, 115 4
M. Schwartz, M. Schaller, M. Ginsberg (1995)
Integrins: emerging paradigms of signal transduction.Annual review of cell and developmental biology, 11
E. Wang, Mikael Bauer, A. Rogstam, S. Linse, D. Logan, C. Wachenfeldt (2008)
Structure and functional properties of the Bacillus subtilis transcriptional repressor RexMolecular Microbiology, 69
Huaiyu Yang, M. Bogner, Y. Stierhof, U. Ludewig (2010)
H+-Independent Glutamine Transport in Plant Root TipsPLoS ONE, 5
V. Belousov, A. Fradkov, K. Lukyanov, D. Staroverov, K. Shakhbazov, A. Terskikh, S. Lukyanov (2006)
Genetically encoded fluorescent indicator for intracellular hydrogen peroxideNature Methods, 3
A. Martín, S. Ceballo, I. Ruminot, R. Lerchundi, W. Frommer, L. Barros (2013)
A Genetically Encoded FRET Lactate Sensor and Its Use To Detect the Warburg Effect in Single Cancer CellsPLoS ONE, 8
Yulong Li, R. Tsien (2012)
pHTomato: A genetically-encoded indicator that enables multiplex interrogation of synaptic activityNature neuroscience, 15
E. Wang, T. Ikonen, M. Knaapila, D. Svergun, D. Logan, C. Wachenfeldt (2011)
Small-angle X-ray scattering study of a Rex family repressor: conformational response to NADH and NAD+ binding in solution.Journal of molecular biology, 408 4
W. Oldham, C. Clish, Yi Yang, J. Loscalzo (2015)
Hypoxia-Mediated Increases in L-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress.Cell metabolism, 22 2
Karen Deuschle, Sakiko Okumoto, M. Fehr, L. Looger, Leonid Kozhukh, W. Frommer (2005)
Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineeringProtein Science, 14
G. Patterson, S. Knobel, P. Arkhammar, O. Thastrup, D. Piston (2000)
Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet beta cells.Proceedings of the National Academy of Sciences of the United States of America, 97 10
E. Sickmier, D. Brekasis, S. Paranawithana, J. Bonanno, M. Paget, S. Burley, C. Kielkopf, C. Kielkopf (2005)
X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.Structure, 13 1
L. Stein, S. Imai (2012)
The dynamic regulation of NAD metabolism in mitochondriaTrends in Endocrinology & Metabolism, 23
A. Nakamura, A. Sosa, H. Komori, A. Kita, K. Miki (2006)
Crystal structure of TTHA1657 (AT‐rich DNA‐binding protein; p25) from Thermus thermophilus HB8 at 2.16 Å resolutionProteins: Structure, 66
Chang Zhang, B. Ye (2014)
A single fluorescent protein-based sensor for in vivo 2-oxogluatarate detection in cell.Biosensors & bioelectronics, 54
Christian Wilms, M. Häusser (2014)
Twitching towards the ideal calcium sensorNature Methods, 11
L. Nausch, J. Ledoux, A. Bonev, M. Nelson, W. Dostmann (2008)
Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensorsProceedings of the National Academy of Sciences, 105
SoNar is a fluorescent biosensor that is able to monitor NAD+/NADH redox state in living cells and in vivo. This protocol describes how to use SoNar for single cell imaging, high-throughput chemical screening, and in vivo imaging in mice.
Nature Protocols – Springer Journals
Published: Jun 30, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.