Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Dasgupta, T. Auth, G. Gompper (2014)
Shape and orientation matter for the cellular uptake of nonspherical particles.Nano letters, 14 2
Bapurao Surnar, K. Sharma, M. Jayakannan (2015)
Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.Nanoscale, 7 42
Yadong Wang, Yu Kim, R. Langer (2003)
In vivo degradation characteristics of poly(glycerol sebacate).Journal of biomedical materials research. Part A, 66 1
Wei-Hsuan Kuo, Meng‐Jiy Wang, Chia-wen Chang, T. Wei, J. Lai, W. Tsai, Chiapyng Lee (2012)
Improvement of hemocompatibility on materials by photoimmobilization of poly(ethylene glycol)Journal of Materials Chemistry, 22
G. Tonga, Krishnendu Saha, V. Rotello (2014)
25th Anniversary Article: Interfacing Nanoparticles and Biology: New Strategies for BiomedicineAdvanced Materials, 26
B. Chithrani, A. Ghazani, W. Chan (2006)
Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano letters, 6 4
C. Greulich, Jörg Diendorf, T. Simon, G. Eggeler, M. Epple, M. Köller (2011)
Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells.Acta biomaterialia, 7 1
T. Merkel, K. Herlihy, J. Nunes, Ryan Orgel, J. Rolland, J. Desimone (2010)
Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles.Langmuir : the ACS journal of surfaces and colloids, 26 16
C. Walkey, Jonathan Olsen, Hongbo Guo, A. Emili, W. Chan (2012)
Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.Journal of the American Chemical Society, 134 4
Heather Herd, N. Daum, A. Jones, H. Huwer, H. Ghandehari, C. Lehr (2013)
Nanoparticle geometry and surface orientation influence mode of cellular uptake.ACS nano, 7 3
J. Panyam, V. Labhasetwar (2003)
Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Advanced drug delivery reviews, 55 3
H. Otsuka, Y. Nagasaki, K. Kataoka (2003)
PEGylated nanoparticles for biological and pharmaceutical applications.Advanced drug delivery reviews, 55 3
John-Michael Williford, J. Santos, Rishab Shyam, H. Mao (2015)
Shape Control in Engineering of Polymeric Nanoparticles for Therapeutic Delivery.Biomaterials science, 3 7
T. Riley, T. Govender, S. Stolnik, C. Xiong, M. Garnett, L. Illum, S. Davis (1999)
COLLOIDAL STABILITY AND DRUG INCORPORATION ASPECTS OF MICELLAR-LIKE PLA-PEG NANOPARTICLESColloids and Surfaces B: Biointerfaces, 16
(2010)
Minireview: Nanoparticles and the immune system
S. Gratton, P. Ropp, P. Pohlhaus, J. Luft, V. Madden, M. Napier, J. Desimone (2008)
The effect of particle design on cellular internalization pathwaysProceedings of the National Academy of Sciences, 105
A. Verma, F. Stellacci (2010)
Effect of surface properties on nanoparticle-cell interactions.Small, 6 1
U. Bilati, E. Allémann, E. Doelker (2005)
Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles.European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 24 1
T. Govender, S. Stolnik, M. Garnett, L. Illum, S. Davis (1999)
PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug.Journal of controlled release : official journal of the Controlled Release Society, 57 2
M. Monopoli, Christoffer Åberg, A. Salvati, K. Dawson (2017)
Biomolecular Coronas Provide the Biological Identity of Nanomaterials
R. Meyer, J. Sunshine, Karlo Perica, A. Kosmides, K. Aje, J. Schneck, J. Green (2015)
Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation.Small, 11 13
Hai Wang, Ying Zhao, Yan Wu, Yu-lin Hu, Kaihui Nan, Guangjun Nie, Hao Chen (2011)
Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles.Biomaterials, 32 32
Wei Wang, Weiyi Xiong, Yanhong Zhu, Huibi Xu, Xiangliang Yang (2010)
Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells.Journal of biomedical materials research. Part B, Applied biomaterials, 93 1
V. Torchilin (2014)
Multifunctional, stimuli-sensitive nanoparticulate systems for drug deliveryNature Reviews Drug Discovery, 13
Hong Jin, D. Heller, Richa Sharma, M. Strano (2009)
Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles.ACS nano, 3 1
Ashutosh Singh, Rachit Agarwal, C. Diaz-Ruiz, N. Willett, Peiyi Wang, L. Lee, Qian Wang, R. Guldberg, Andrés García (2014)
Nanoengineered Particles for Enhanced Intra‐Articular Retention and Delivery of ProteinsAdvanced Healthcare Materials, 3
A. Albanese, P. Tang, W. Chan (2012)
The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annual review of biomedical engineering, 14
Sheva Naahidi, M. Jafari, Faramarz Edalat, Faramarz Edalat, K. Raymond, A. Khademhosseini, A. Khademhosseini, A. Khademhosseini, Pu Chen (2013)
Biocompatibility of engineered nanoparticles for drug delivery.Journal of controlled release : official journal of the Controlled Release Society, 166 2
R. Rai, M. Tallawi, A. Grigore, A. Boccaccini (2012)
Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A reviewProgress in Polymer Science, 37
Nastassja Lewinski, V. Colvin, R. Drezek (2008)
Cytotoxicity of nanoparticles.Small, 4 1
N. Kamaly, Basit Yameen, Jun Wu, O. Farokhzad (2016)
Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release.Chemical reviews, 116 4
C. Hu, Ronnie Fang, Brian Luk, Liangfang Zhang (2014)
Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies.Nanoscale, 6 1
Tianmeng Sun, Yu Zhang, Bo Pang, D. Hyun, Miaoxin Yang, Younan Xia (2014)
Engineered nanoparticles for drug delivery in cancer therapy.Angewandte Chemie, 53 46
M. Grzelczak, J. Vermant, E. Furst, L. Liz‐Marzán (2010)
Directed self-assembly of nanoparticles.ACS nano, 4 7
L. Flórez, C. Herrmann, Jens‐M. Cramer, Christoph Hauser, K. Koynov, K. Landfester, D. Crespy, V. Mailänder (2012)
How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells.Small, 8 14
Rachel Whitmire, D. Wilson, Ashutosh Singh, M. Levenston, N. Murthy, Andrés García (2012)
Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins.Biomaterials, 33 30
Chunbai He, Yiping Hu, Lichen Yin, Cui Tang, C. Yin (2010)
Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.Biomaterials, 31 13
R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R. Müller (2000)
'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption.Colloids and surfaces. B, Biointerfaces, 18 3-4
Elvin Blanco, Haifa Shen, M. Ferrari (2015)
Principles of nanoparticle design for overcoming biological barriers to drug deliveryNature Biotechnology, 33
Cheng (2007)
Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug deliveryBiomaterials, 28
J. Hickey, J. Santos, John-Michael Williford, H. Mao (2015)
Control of polymeric nanoparticle size to improve therapeutic delivery.Journal of controlled release : official journal of the Controlled Release Society, 219
S. Mura, J. Nicolas, P. Couvreur (2013)
Stimuli-responsive nanocarriers for drug delivery.Nature materials, 12 11
Ying Zhang, R. Zhuo (2005)
Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone.Biomaterials, 26 33
Yin Zhang, T. Nayak, H. Hong, W. Cai (2012)
Graphene: a versatile nanoplatform for biomedical applications.Nanoscale, 4 13
Wen Jiang, Betty Kim, J. Rutka, W. Chan (2008)
Nanoparticle-mediated cellular response is size-dependent.Nature nanotechnology, 3 3
J. Jokerst, T. Lobovkina, R. Zare, S. Gambhir (2011)
Nanoparticle PEGylation for imaging and therapy.Nanomedicine, 6 4
Qingxin Mu, Gaoxing Su, Liwen Li, Ben Gilbertson, Lam Yu, Qiu Zhang, Ya‐Ping Sun, B. Yan (2012)
Size-dependent cell uptake of protein-coated graphene oxide nanosheets.ACS applied materials & interfaces, 4 4
S. Glotzer, M. Solomon (2007)
Anisotropy of building blocks and their assembly into complex structures.Nature materials, 6 8
David Chimene, D. Alge, A. Gaharwar (2015)
Two‐Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future ProspectsAdvanced Materials, 27
M. Dobrovolskaia, S. McNeil (2007)
Immunological properties of engineered nanomaterialsNature Nanotechnology, 2
Alpesh Patel, A. Gaharwar, G. Iviglia, Hongbin Zhang, S. Mukundan, S. Mihăilă, D. Demarchi, A. Khademhosseini (2013)
Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.Biomaterials, 34 16
F. Danhier, N. Lecouturier, B. Vroman, C. Jérôme, J. Marchand‐Brynaert, O. Féron, V. Préat (2009)
Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.Journal of controlled release : official journal of the Controlled Release Society, 133 1
M. Dobrovolskaia, J. Clogston, B. Neun, Jennifer Hall, A. Patri, S. McNeil (2008)
Method for analysis of nanoparticle hemolytic properties in vitro.Nano letters, 8 8
Daniel Moyano, Meir Goldsmith, David Solfiell, Dalit Landesman-Milo, Oscar Miranda, D. Peer, V. Rotello (2012)
Nanoparticle hydrophobicity dictates immune response.Journal of the American Chemical Society, 134 9
A. Panariti, G. Miserocchi, I. Rivolta (2012)
The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?Nanotechnology, science and applications, 5
B. Betts, Kim Binsted, Charles Jorgensen (2006)
Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm
J. Suk, Qingguo Xu, Namho Kim, J. Hanes, L. Ensign (2016)
PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Advanced drug delivery reviews, 99 Pt A
X. Loh, Anis Karim, Cally Owh (2015)
Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications.Journal of materials chemistry. B, 3 39
Rachit Agarwal, Vikramjit Singh, Patrick Jurney, Li Shi, S. Sreenivasan, K. Roy (2013)
Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanismsProceedings of the National Academy of Sciences, 110
Robby Petros, J. Desimone (2010)
Strategies in the design of nanoparticles for therapeutic applicationsNature Reviews Drug Discovery, 9
Yi Zhang, Samuel Tekobo, Y. Tu, Qunfang Zhou, Xin Jin, S. Dergunov, E. Pinkhassik, B. Yan (2012)
Permission to enter cell by shape: nanodisk vs nanosphere.ACS applied materials & interfaces, 4 8
Yadong Wang, G. Ameer, B. Sheppard, R. Langer (2002)
A tough biodegradable elastomerNature Biotechnology, 20
Punyavee Kerativitayanan, James Carrow, A. Gaharwar (2015)
Nanomaterials for Engineering Stem Cell ResponsesAdvanced Healthcare Materials, 4
(2010)
Liz-Marz an LM
A. Nel, L. Mädler, D. Velegol, T. Xia, E. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson (2009)
Understanding biophysicochemical interactions at the nano-bio interface.Nature materials, 8 7
V. Sokolova, Diana Kozlova, T. Knuschke, J. Buer, A. Westendorf, M. Epple (2013)
Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells.Acta biomaterialia, 9 7
Nanoparticle shape has emerged as a key regulator of nanoparticle transport across physiological barriers, intracellular uptake, and biodistribution. We report a facile approach to synthesize ellipsoidal nanoparticles through self‐assembly of poly(glycerol sebacate)‐co‐poly(ethylene glycol) (PGS‐co‐PEG). The PGS‐PEG nanoparticle system is highly tunable, and the semiaxis length of the nanoparticles can be modulated by changing PGS‐PEG molar ratio and incorporating therapeutics. As both PGS and PEG are highly biocompatible, the PGS‐co‐PEG nanoparticles show high hemo‐, immuno‐, and cytocompatibility. Our data suggest that PGS‐co‐PEG nanoparticles have the potential for use in a wide range of biomedical applications including regenerative medicine, stem cell engineering, immune modulation, and cancer therapeutics. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2048–2058, 2018.
Journal of Biomedical Materials Research Part A – Wiley
Published: Jul 1, 2018
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.