Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Ng, S. Henikoff (2003)
SIFT: predicting amino acid changes that affect protein functionNucleic acids research, 31 13
Hashem Shihab, J. Gough, D. Cooper, P. Stenson, G. Barker, K. Edwards, I. Day, Tom Gaunt (2012)
Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov ModelsHuman Mutation, 34
J. Costa, S. Sousa, Ana Justino, T. Kay, S. Fernandes, L. Cirnes, F. Schmitt, J. Machado (2013)
Nonoptical Massive Parallel DNA Sequencing of BRCA1 and BRCA2 Genes in a Diagnostic SettingHuman Mutation, 34
Berman (2000)
The protein data bankNucleic Acids Res, 28
D. Muzny, M. Bainbridge, K. Chang, H. Dinh, J. Drummond, G. Fowler, C. Kovar, L. Lewis, M. Morgan, I. Newsham, J. Reid, J. Santibanez, E. Shinbrot, L. Treviño, Yuan-qing Wu, Min Wang, P. Gunaratne, L. Donehower, C. Creighton, D. Wheeler, R. Gibbs, M. Lawrence, Douglas Voet, R. Jing, K. Cibulskis, A. Sivachenko, P. Stojanov, A. McKenna, E. Lander, S. Gabriel, L. Ding, R. Fulton, D. Koboldt, T. Wylie, Jason Walker, D. Dooling, L. Fulton, K. Delehaunty, C. Fronick, Ryan Demeter, E. Mardis, R. Wilson, Andy Chu, Hye-Jung Chun, A. Mungall, E. Pleasance, A. Robertson, D. Stoll, M. Balasundaram, I. Birol, Y. Butterfield, E. Chuah, R. Coope, Noreen Dhalla, R. Guin, Carrie Hirst, M. Hirst, R. Holt, Darlene Lee, H. Li, Michael Mayo, Richard Moore, J. Schein, Jared Slobodan, Angela Tam, N. Thiessen, R. Varhol, Thomas Zeng, Yongjun Zhao, Steven Jones, M. Marra, A. Bass, A. Ramos, G. Saksena, A. Cherniack, S. Schumacher, B. Tabak, S. Carter, Nam Pho, Huy Nguyen, R. Onofrio, A. Crenshaw, K. Ardlie, R. Beroukhim, W. Winckler, M. Meyerson, A. Protopopov, Angela Hadjipanayis, E. Lee, Ruibin Xi, Lixing Yang, X. Ren, N. Sathiamoorthy, Peng-Chieh Chen, Psalm Haseley, Yonghong Xiao, Semin Lee, J. Seidman, L. Chin, P. Park, R. Kucherlapati, J. Auman, K. Hoadley, Ying Du, M. Wilkerson, Yan Shi, C. Liquori, S. Meng, Ling Li, Yidi Turman, M. Topal, Donghui Tan, S. Waring, Elizabeth Buda, Jesse Walsh, Corbin Jones, P. Mieczkowski, Darshan Singh, Junyuan Wu, Anisha Gulabani, Peter Dolina, T. Bodenheimer, A. Hoyle, J. Simons, Matthew Soloway, Lisle Mose, S. Jefferys, S. Balu, Brian O’Connor, J. Prins, Derek Chiang, D. Hayes, C. Perou, T. Hinoue, D. Weisenberger, D. Maglinte, F. Pan, B. Berman, D. Berg, Hui Shen, T. Triche, S. Baylin, P. Laird, G. Getz, M. Noble, Doug Voat, N. Gehlenborg, D. Dicara, Juinhua Zhang, Hailei Zhang, Chang-Jiun Wu, Spring Liu, S. Shukla, Lihua Zhou, Pei Lin, R. Park, Marc-Danie Nazaire, James Robinson, H. Thorvaldsdóttir, J. Mesirov, V. Thorsson, Sheila Reynolds, Brady Bernard, R. Kreisberg, Jake Lin, L. Iype, Ryan Bressler, Timo Erkkilä, M. Gundapuneni, Yuexin Liu, Adam Norberg, Thomas Robinson, Da Yang, Wei Zhang, I. Shmulevich, J. Ronde, N. Schultz, E. Cerami, G. Ciriello, A. Goldberg, Benjamin Gross, A. Jacobsen, Jianjiong Gao, B. Kaczkowski, Rileen Sinha, B. Aksoy, Yevgeniy Antipin, B. Reva, R. Shen, B. Taylor, M. Ladanyi, C. Sander, R. Akbani, Nianxiang Zhang, B. Broom, Tod Casasent, A. Unruh, Chris Wakefield, S. Hamilton, R. Cason, K. Baggerly, J. Weinstein, D. Haussler, C. Benz, Joshua Stuart, S. Benz, J. Sanborn, Charles Vaske, Jingchun Zhu, C. Szeto, G. Scott, C. Yau, S. Ng, Theodore Goldstein, K. Ellrott, E. Collisson, A. Cozen, D. Zerbino, C. Wilks, Brian Craft, P. Spellman, R. Penny, T. Shelton, M. Hatfield, S. Morris, P. Yena, C. Shelton, M. Sherman, J. Paulauskis, J. Gastier-Foster, Jay Bowen, N. Ramirez, Aaron Black, R. Pyatt, L. Wise, P. White, M. Bertagnolli, Jennifer Brown, T. Chan, Gerald Chu, Christine Czerwinski, F. Denstman, R. Dhir, A. Dörner, C. Fuchs, J. Guillem, M. Iacocca, H. Juhl, Andrew Kaufman, B. Kohl, X. Le, M. Mariano, Elizabeth Medina, M. Meyers, G. Nash, P. Paty, N. Petrelli, B. Rabeno, W. Richards, D. Solit, P. Swanson, L. Temple, J. Tepper, Richard Thorp, E. Vakiani, M. Weiser, J. Willis, G. Witkin, Z. Zeng, M. Zinner, C. Zornig, M. Jensen, R. Sfeir, A. Kahn, A. Chu, Prachi Kothiyal, Zhining Wang, E. Snyder, J. Pontius, T. Pihl, Brenda Ayala, M. Backus, Jessica Walton, J. Whitmore, J. Baboud, D. Berton, M. Nicholls, Deepak Srinivasan, R. Raman, Stanley Girshik, Peter Kigonya, S. Alonso, Rashmi Sanbhadti, S. Barletta, J. Greene, D. Pot, K. Shaw, Laura Dillon, K. Buetow, Tanja Davidsen, John Demchok, G. Eley, M. Ferguson, P. Fielding, C. Schaefer, Margi Sheth, Liming Yang, M. Guyer, B. Ozenberger, Jacqueline Palchik, Jane Peterson, H. Sofia, E. Thomson (2012)
Comprehensive molecular characterization of human colon and rectal cancerNature, 487
C. Douville, H. Carter, Rick Kim, N. Niknafs, M. Diekhans, P. Stenson, D. Cooper, Michael Ryan, R. Karchin (2013)
CRAVAT: cancer-related analysis of variants toolkitBioinformatics, 29
J. Beck, A. Pittman, G. Adamson, T. Campbell, J. Kenny, H. Houlden, J. Rohrer, R. Silva, M. Shoai, J. Uphill, M. Poulter, J. Hardy, C. Mummery, J. Warren, J. Schott, Nick Fox, M. Rossor, J. Collinge, S. Mead (2014)
Validation of next-generation sequencing technologies in genetic diagnosis of dementiaNeurobiology of Aging, 35
Rebecca Shepherd, S. Forbes, D. Beare, S. Bamford, C. Cole, Sari Ward, Nidhi Bindal, Prasad Gunasekaran, Mingming Jia, C. Kok, Kenric Leung, A. Menzies, A. Butler, J. Teague, P. Campbell, M. Stratton, P. Futreal (2011)
Data mining using the Catalogue of Somatic Mutations in Cancer BioMartDatabase: The Journal of Biological Databases and Curation, 2011
D. Karolchik, G. Bejerano, A. Hinrichs, R. Kuhn, W. Miller, K. Rosenbloom, A. Zweig, D. Haussler, W. Kent (2007)
Comparative genomic analysis using the UCSC genome browser.Methods in molecular biology, 395
T. Er, Chih-Chieh Chen, L. Bujanda, M. Herreros-Villanueva (2014)
Clinical relevance of KRAS mutations in codon 13: Where are we?Cancer letters, 343 1
Vandin (2012)
De novo discovery of mutated driver pathways in cancerGenome Res, 22
M. Nikiforova, Abigail Wald, Somak Roy, M. Durso, Y. Nikiforov (2013)
Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer.The Journal of clinical endocrinology and metabolism, 98 11
(2011)
TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing dataBioinformatics, 28
C. Kandoth, M. McLellan, Fabio Vandin, K. Ye, Beifang Niu, Charles Lu, Mingchao Xie, Qunyuan Zhang, Joshua McMichael, Matthew Wyczalkowski, Mark Leiserson, Christopher Miller, J. Welch, M. Walter, M. Wendl, T. Ley, R. Wilson, Benjamin Raphael, L. Ding (2013)
Mutational landscape and significance across 12 major cancer typesNature, 502
M. Bamshad, Sarah Ng, A. Bigham, H. Tabor, M. Emond, D. Nickerson, J. Shendure (2011)
Exome sequencing as a tool for Mendelian disease gene discoveryNature Reviews Genetics, 12
Yaping Yang, D. Muzny, J. Reid, M. Bainbridge, A. Willis, P. Ward, Alicia Braxton, J. Beuten, F. Xia, Z. Niu, M. Hardison, R. Person, M. Bekheirnia, Magalie Leduc, Amelia Kirby, Peter Pham, J. Scull, Min Wang, Yan Ding, S. Plon, J. Lupski, A. Beaudet, R. Gibbs, C. Eng (2013)
Clinical whole-exome sequencing for the diagnosis of mendelian disorders.The New England journal of medicine, 369 16
Kai Wang, Mingyao Li, H. Hakonarson (2010)
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing dataNucleic Acids Research, 38
Sarah Ng, K. Buckingham, Choli Lee, A. Bigham, H. Tabor, K. Dent, C. Huff, P. Shannon, E. Jabs, D. Nickerson, J. Shendure, M. Bamshad (2009)
Exome sequencing identifies the cause of a Mendelian disorderNature genetics, 42
M. Landrum, Jennifer Lee, George Riley, W. Jang, W. Rubinstein, D. Church, D. Maglott (2013)
ClinVar: public archive of relationships among sequence variation and human phenotypeNucleic Acids Research, 42
W. Gentzsch (2001)
Sun Grid Engine: towards creating a compute power gridProceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid
G. Ciriello, E. Cerami, C. Sander, N. Schultz (2012)
Mutual exclusivity analysis identifies oncogenic network modules.Genome research, 22 2
王强 (2006)
E-mail 陷阱
A. Hamosh, A. Scott, J. Amberger, Carol Bocchini, V. McKusick (2004)
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disordersNucleic Acids Research, 33
Xiaoming Liu, X. Jian, E. Boerwinkle (2013)
dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and AnnotationsHuman Mutation, 34
A. Kamburov, U. Stelzl, H. Lehrach, R. Herwig (2012)
The ConsensusPathDB interaction database: 2013 updateNucleic Acids Research, 41
Po-Jung Huang, Yuan-Ming Yeh, Ruei-chi Gan, Chi-Ching Lee, Ting-Wen Chen, Cheng-Yang Lee, Hsuan Liu, Shu‐Jen Chen, P. Tang (2013)
CPAP: Cancer Panel Analysis PipelineHuman Mutation, 34
D. Koboldt, Qunyuan Zhang, D. Larson, D. Shen, M. McLellan, Ling Lin, Christopher Miller, E. Mardis, L. Ding, R. Wilson (2012)
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.Genome research, 22 3
F. Lucas, Gao Wang, P. Scheet, Bo Peng (2012)
Integrated annotation and analysis of genetic variants from next-generation sequencing studies with variant toolsBioinformatics, 28 3
Robert Finn, Jaina Mistry, John Tate, Penny Coggill, A. Heger, Joanne Pollington, O. Gavin, Prasad Gunasekaran, Goran Ceric, Kristoffer Forslund, Liisa Holm, Erik Sonnhammer, Sean Eddy, Alex Bateman (2007)
The Pfam protein families databaseNucleic Acids Research, 38
Finn (2014)
Pfam: the protein families databaseNucleic Acids Res, 42
E. Cerami, Jianjiong Gao, U. Dogrusoz, Benjamin Gross, S. Sumer, B. Aksoy, A. Jacobsen, Caitlin Byrne, M. Heuer, E. Larsson, Yevgeniy Antipin, B. Reva, A. Goldberg, C. Sander, N. Schultz (2012)
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer discovery, 2 5
Jana Schwarz, C. Rödelsperger, M. Schuelke, D. Seelow (2010)
MutationTaster evaluates disease-causing potential of sequence alterationsNature Methods, 7
H. Berman, Tammy Battistuz, T. Bhat, Wolfgang Bluhm, Philip Bourne, K. Burkhardt, Zukang Feng, G. Gilliland, L. Iype, Shri Jain, Phoebe Fagan, Jessica Marvin, David Padilla, V. Ravichandran, B. Schneider, N. Thanki, H. Weissig, J. Westbrook, C. Zardecki
Electronic Reprint Biological Crystallography the Protein Data Bank Biological Crystallography the Protein Data Bank
Fabio Vandin, E. Upfal, Benjamin Raphael (2011)
De Novo Discovery of Mutated Driver Pathways in CancerGenome research, 22 2
A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M. DePristo (2010)
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome research, 20 9
S. Sherry, Minghong Ward, Michael Kholodov, J. Baker, Lon Phan, Elizabeth Smigielski, K. Sirotkin (2001)
dbSNP: the NCBI database of genetic variationNucleic acids research, 29 1
Jordi Deu-Pons, Michael Schroeder, N. López-Bigas (2014)
jHeatmap: an interactive heatmap viewer for the webBioinformatics, 30 12
E. Camon, M. Magrane, D. Barrell, Vivian Lee, E. Dimmer, J. Maslen, David Binns, Nicola Harte, R. Lopez, R. Apweiler (2004)
The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene OntologyNucleic acids research, 32 Database issue
Next‐generation sequencing (NGS) technologies have revolutionized the field of genetics and are trending toward clinical diagnostics. Exome and targeted sequencing in a disease context represent a major NGS clinical application, considering its utility and cost‐effectiveness. With the ongoing discovery of disease‐associated genes, various gene panels have been launched for both basic research and diagnostic tests. However, the fundamental inconsistencies among the diverse annotation sources, software packages, and data formats have complicated the subsequent analysis. To manage disease‐associated NGS data, we developed Vanno, a Web‐based application for in‐depth analysis and rapid evaluation of disease‐causative genome sequence alterations. Vanno integrates information from biomedical databases, functional predictions from available evaluation models, and mutation landscapes from TCGA cancer types. A highly integrated framework that incorporates filtering, sorting, clustering, and visual analytic modules is provided to facilitate exploration of oncogenomics datasets at different levels, such as gene, variant, protein domain, or three‐dimensional structure. Such design is crucial for the extraction of knowledge from sequence alterations and translating biological insights into clinical applications. Taken together, Vanno supports almost all disease‐associated gene tests and exome sequencing panels designed for NGS, providing a complete solution for targeted and exome sequencing analysis. Vanno is freely available at http://cgts.cgu.edu.tw/vanno.
Human Mutation – Wiley
Published: Feb 1, 2015
Keywords: NGS; exomes; SNV annotation; TCGA
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.