Advances in Frontier Research on Engineering StructuresStructural Seismic Performance of Prefabricated Steel Plate Shear Wall with High Energy Dissipation
Advances in Frontier Research on Engineering Structures: Structural Seismic Performance of...
Ma, Xiaofei; Yu, Yinquan; Wang, Zhe
2023-02-14 00:00:00
[China is located at the intersection of the Pacific Rim seismic belt and the Alpine Mountain-Himalayan seismic belt. Earthquakes occur frequently and with high intensity in China, and the structural damage caused by earthquakes leads to huge casualties and serious economic losses. Steel plate shear wall exhibits satisfying seismic performance which is the key to its application in high-rise buildings and high intensity areas. Meanwhile, the industrialization of new construction requires prefabricated steel plate shear wall structure. In this paper, a kind of prefabricated steel plate shear wall with high energy dissipation is proposed. The finite element study on the seismic performance of the prefabricated steel plate shear wall under low cyclic load was carried out by varying the width-to-thickness ratio of steel connecting plate belt and width-to-thickness ratio of ring damper. The failure modes, hysteresis curves, skeleton curves, stiffness degradation, energy dissipation and displacement ductility coefficients were analyzed. The results showed that the hysteretic curves of the prefabricated steel plate shear wall are relatively full under low cyclic load, and the displacement ductility coefficients are above 8. It is noted that the seismic performance of the prefabricated steel plate shear wall is advantageous. It is suggested that width-to-thickness ratio of the steel connecting plate belt and the width-to-thickness ratio of the ring damper are 3.75 for engineering practice.]
http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.pnghttp://www.deepdyve.com/lp/springer-journals/advances-in-frontier-research-on-engineering-structures-structural-Aj2OLoGM54
Advances in Frontier Research on Engineering StructuresStructural Seismic Performance of Prefabricated Steel Plate Shear Wall with High Energy Dissipation
[China is located at the intersection of the Pacific Rim seismic belt and the Alpine Mountain-Himalayan seismic belt. Earthquakes occur frequently and with high intensity in China, and the structural damage caused by earthquakes leads to huge casualties and serious economic losses. Steel plate shear wall exhibits satisfying seismic performance which is the key to its application in high-rise buildings and high intensity areas. Meanwhile, the industrialization of new construction requires prefabricated steel plate shear wall structure. In this paper, a kind of prefabricated steel plate shear wall with high energy dissipation is proposed. The finite element study on the seismic performance of the prefabricated steel plate shear wall under low cyclic load was carried out by varying the width-to-thickness ratio of steel connecting plate belt and width-to-thickness ratio of ring damper. The failure modes, hysteresis curves, skeleton curves, stiffness degradation, energy dissipation and displacement ductility coefficients were analyzed. The results showed that the hysteretic curves of the prefabricated steel plate shear wall are relatively full under low cyclic load, and the displacement ductility coefficients are above 8. It is noted that the seismic performance of the prefabricated steel plate shear wall is advantageous. It is suggested that width-to-thickness ratio of the steel connecting plate belt and the width-to-thickness ratio of the ring damper are 3.75 for engineering practice.]
Published: Feb 14, 2023
Keywords: Prefabricated; Steel plate shear wall; High energy dissipation; Seismic performance; Finite element study
To get new article updates from a journal on your personalized homepage, please log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.