Access the full text.
Sign up today, get DeepDyve free for 14 days.
Parinaz Aliahmad, Asha Kadavallore, Brian Torre, D. Kappes, J. Kaye (2011)
TOX Is Required for Development of the CD4 T Cell Lineage Gene ProgramThe Journal of Immunology, 187
(SujinoT., KanaiT., OnoY., MikamiY., HayashiA., DoiT., MatsuokaK., HisamatsuT., TakaishiH., OgataH., 2011 Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology. 141:1014–1023. 10.1053/j.gastro.2011.05.05221699791)
SujinoT., KanaiT., OnoY., MikamiY., HayashiA., DoiT., MatsuokaK., HisamatsuT., TakaishiH., OgataH., 2011 Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology. 141:1014–1023. 10.1053/j.gastro.2011.05.05221699791, SujinoT., KanaiT., OnoY., MikamiY., HayashiA., DoiT., MatsuokaK., HisamatsuT., TakaishiH., OgataH., 2011 Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology. 141:1014–1023. 10.1053/j.gastro.2011.05.05221699791
F. Powrie, M. Leach, S. Mauze, S. Menon, Linda Caddle, R. Coffman (1994)
Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells.Immunity, 1 7
Deborah Brown, Cris Kamperschroer, Allison Dilzer, Deborah Roberts, S. Swain (2009)
IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells.Cellular immunology, 257 1-2
J. Zaunders, W. Dyer, Bin Wang, M. Munier, M. Miranda-Saksena, R. Newton, J. Moore, C. Mackay, D. Cooper, N. Saksena, A. Kelleher (2004)
Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection.Blood, 103 6
(2002)
Characterization of CD4 CTLs Ex Vivo
(AppayV., ZaundersJ.J., PapagnoL., SuttonJ., JaramilloA., WatersA., EasterbrookP., GreyP., SmithD., McMichaelA.J., 2002 Characterization of CD4+ CTLs ex vivo. J. Immunol. 168:5954–5958. 10.4049/jimmunol.168.11.595412023402)
AppayV., ZaundersJ.J., PapagnoL., SuttonJ., JaramilloA., WatersA., EasterbrookP., GreyP., SmithD., McMichaelA.J., 2002 Characterization of CD4+ CTLs ex vivo. J. Immunol. 168:5954–5958. 10.4049/jimmunol.168.11.595412023402, AppayV., ZaundersJ.J., PapagnoL., SuttonJ., JaramilloA., WatersA., EasterbrookP., GreyP., SmithD., McMichaelA.J., 2002 Characterization of CD4+ CTLs ex vivo. J. Immunol. 168:5954–5958. 10.4049/jimmunol.168.11.595412023402
(BolesK.S., BarchetW., DiacovoT., CellaM., and ColonnaM. 2005 The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood. 106:779–786. 10.1182/blood-2005-02-081715811952)
BolesK.S., BarchetW., DiacovoT., CellaM., and ColonnaM. 2005 The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood. 106:779–786. 10.1182/blood-2005-02-081715811952, BolesK.S., BarchetW., DiacovoT., CellaM., and ColonnaM. 2005 The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAM. Blood. 106:779–786. 10.1182/blood-2005-02-081715811952
(O’SheaJ.J., and PaulW.E. 2010 Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 327:1098–1102. 10.1126/science.117833420185720)
O’SheaJ.J., and PaulW.E. 2010 Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 327:1098–1102. 10.1126/science.117833420185720, O’SheaJ.J., and PaulW.E. 2010 Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 327:1098–1102. 10.1126/science.117833420185720
(ReisB.S., RogozA., Costa-PintoF.A., TaniuchiI., and MucidaD. 2013 Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:271–280. 10.1038/ni.251823334789)
ReisB.S., RogozA., Costa-PintoF.A., TaniuchiI., and MucidaD. 2013 Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:271–280. 10.1038/ni.251823334789, ReisB.S., RogozA., Costa-PintoF.A., TaniuchiI., and MucidaD. 2013 Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:271–280. 10.1038/ni.251823334789
Hiroaki Ito, C. Fathman (1997)
CD45RBhigh CD4+ T cells from IFN-γ knockout mice do not induce wasting diseaseJournal of Autoimmunity, 10
H. Wagner, A. Starzinski-Powitz, H. Jung, M. Röllinghoff (1977)
Induction of I region-restricted hapten-specific cytotoxic T lymphocytes.Journal of immunology, 119 4
Songyang Zhou, A. Fanning, C. Fu, Jian Xu, S. Marfatia, A. Chishti, A. Crompton, A. Chan, James Anderson, L. Cantley (1997)
Recognition of Unique Carboxyl-Terminal Motifs by Distinct PDZ DomainsScience, 275
K. Eshima, S. Chiba, Harumi Suzuki, K. Kokubo, Hirosuke Kobayashi, Misao Iizuka, K. Iwabuchi, N. Shinohara (2012)
Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4(+) Th cells cytotoxic by activating both perforin- and FasL-pathways.Immunology letters, 144 1-2
(PearceE.L., MullenA.C., MartinsG.A., KrawczykC.M., HutchinsA.S., ZediakV.P., BanicaM., DiCioccioC.B., GrossD.A., MaoC.A., 2003 Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 302:1041–1043. 10.1126/science.109014814605368)
PearceE.L., MullenA.C., MartinsG.A., KrawczykC.M., HutchinsA.S., ZediakV.P., BanicaM., DiCioccioC.B., GrossD.A., MaoC.A., 2003 Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 302:1041–1043. 10.1126/science.109014814605368, PearceE.L., MullenA.C., MartinsG.A., KrawczykC.M., HutchinsA.S., ZediakV.P., BanicaM., DiCioccioC.B., GrossD.A., MaoC.A., 2003 Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 302:1041–1043. 10.1126/science.109014814605368
Differentiation of CD4 + CTL | Takeuchi
S. Szabo, B. Sullivan, S. Peng, L. Glimcher (2003)
Molecular mechanisms regulating Th1 immune responses.Annual review of immunology, 21
(Hernández-HoyosG., AndersonM.K., WangC., RothenbergE.V., and Alberola-IlaJ. 2003 GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity. 19:83–94. 10.1016/S1074-7613(03)00176-612871641)
Hernández-HoyosG., AndersonM.K., WangC., RothenbergE.V., and Alberola-IlaJ. 2003 GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity. 19:83–94. 10.1016/S1074-7613(03)00176-612871641, Hernández-HoyosG., AndersonM.K., WangC., RothenbergE.V., and Alberola-IlaJ. 2003 GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity. 19:83–94. 10.1016/S1074-7613(03)00176-612871641
(PowrieF., LeachM.W., MauzeS., MenonS., CaddleL.B., and CoffmanR.L. 1994 Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1:553–562. 10.1016/1074-7613(94)90045-07600284)
PowrieF., LeachM.W., MauzeS., MenonS., CaddleL.B., and CoffmanR.L. 1994 Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1:553–562. 10.1016/1074-7613(94)90045-07600284, PowrieF., LeachM.W., MauzeS., MenonS., CaddleL.B., and CoffmanR.L. 1994 Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1:553–562. 10.1016/1074-7613(94)90045-07600284
M. Kuramochi, H. Fukuhara, T. Nobukuni, T. Kanbe, T. Maruyama, Hara Ghosh, M. Pletcher, M. Isomura, M. Onizuka, T. Kitamura, T. Sekiya, R. Reeves, Y. Murakami (2001)
TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancerNature Genetics, 27
(HeX., HeX., DaveV.P., ZhangY., HuaX., NicolasE., XuW., RoeB.A., and KappesD.J. 2005 The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature. 433:826–833. 10.1038/nature0333815729333)
HeX., HeX., DaveV.P., ZhangY., HuaX., NicolasE., XuW., RoeB.A., and KappesD.J. 2005 The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature. 433:826–833. 10.1038/nature0333815729333, HeX., HeX., DaveV.P., ZhangY., HuaX., NicolasE., XuW., RoeB.A., and KappesD.J. 2005 The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature. 433:826–833. 10.1038/nature0333815729333
(QuezadaS.A., SimpsonT.R., PeggsK.S., MerghoubT., ViderJ., FanX., BlasbergR., YagitaH., MuranskiP., AntonyP.A., 2010 Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207:637–650. 10.1084/jem.2009191820156971)
QuezadaS.A., SimpsonT.R., PeggsK.S., MerghoubT., ViderJ., FanX., BlasbergR., YagitaH., MuranskiP., AntonyP.A., 2010 Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207:637–650. 10.1084/jem.2009191820156971, QuezadaS.A., SimpsonT.R., PeggsK.S., MerghoubT., ViderJ., FanX., BlasbergR., YagitaH., MuranskiP., AntonyP.A., 2010 Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207:637–650. 10.1084/jem.2009191820156971
Ying Xie, A. Akpinarli, C. Maris, Edward Hipkiss, M. Lane, Eun-Kyung Kwon, P. Muranski, N. Restifo, P. Antony (2010)
Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanomaThe Journal of Experimental Medicine, 207
William O'Connor, M. Kamanaka, C. Booth, T. Town, S. Nakae, Y. Iwakura, J. Kolls, R. Flavell (2009)
A protective function for interleukin 17A in T cell–mediated intestinal inflammationNature Immunology, 10
(MarshallN.B., and SwainS.L. 2011 Cytotoxic CD4 T cells in antiviral immunity. J. Biomed. Biotechnol. 2011:954602 10.1155/2011/95460222174559)
MarshallN.B., and SwainS.L. 2011 Cytotoxic CD4 T cells in antiviral immunity. J. Biomed. Biotechnol. 2011:954602 10.1155/2011/95460222174559, MarshallN.B., and SwainS.L. 2011 Cytotoxic CD4 T cells in antiviral immunity. J. Biomed. Biotechnol. 2011:954602 10.1155/2011/95460222174559
(TaniuchiI., OsatoM., EgawaT., SunshineM.J., BaeS.C., KomoriT., ItoY., and LittmanD.R. 2002 Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 111:621–633. 10.1016/S0092-8674(02)01111-X12464175)
TaniuchiI., OsatoM., EgawaT., SunshineM.J., BaeS.C., KomoriT., ItoY., and LittmanD.R. 2002 Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 111:621–633. 10.1016/S0092-8674(02)01111-X12464175, TaniuchiI., OsatoM., EgawaT., SunshineM.J., BaeS.C., KomoriT., ItoY., and LittmanD.R. 2002 Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell. 111:621–633. 10.1016/S0092-8674(02)01111-X12464175
A. Takeuchi, Y. Itoh, Akiko Takumi, Chitose Ishihara, N. Arase, T. Yokosuka, H. Koseki, S. Yamasaki, Y. Takai, J. Miyoshi, K. Ogasawara, T. Saito (2009)
CRTAM Confers Late-Stage Activation of CD8+ T Cells to Regulate Retention within Lymph Node1The Journal of Immunology, 183
(GlimcherL.H., TownsendM.J., SullivanB.M., and LordG.M. 2004 Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4:900–911. 10.1038/nri149015516969)
GlimcherL.H., TownsendM.J., SullivanB.M., and LordG.M. 2004 Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4:900–911. 10.1038/nri149015516969, GlimcherL.H., TownsendM.J., SullivanB.M., and LordG.M. 2004 Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4:900–911. 10.1038/nri149015516969
(ThibodeauJ., Bourgeois-DaigneaultM.C., and LapointeR. 2012 Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. OncoImmunology. 1:908–916. 10.4161/onci.2120523162758)
ThibodeauJ., Bourgeois-DaigneaultM.C., and LapointeR. 2012 Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. OncoImmunology. 1:908–916. 10.4161/onci.2120523162758, ThibodeauJ., Bourgeois-DaigneaultM.C., and LapointeR. 2012 Targeting the MHC Class II antigen presentation pathway in cancer immunotherapy. OncoImmunology. 1:908–916. 10.4161/onci.2120523162758
(van LeeuwenE.M., RemmerswaalE.B., VossenM.T., RowshaniA.T., Wertheim-van DillenP.M., van LierR.A., and ten BergeI.J. 2004 Emergence of a CD4+CD28− granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 173:1834–1841. 10.4049/jimmunol.173.3.183415265915)
van LeeuwenE.M., RemmerswaalE.B., VossenM.T., RowshaniA.T., Wertheim-van DillenP.M., van LierR.A., and ten BergeI.J. 2004 Emergence of a CD4+CD28− granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 173:1834–1841. 10.4049/jimmunol.173.3.183415265915, van LeeuwenE.M., RemmerswaalE.B., VossenM.T., RowshaniA.T., Wertheim-van DillenP.M., van LierR.A., and ten BergeI.J. 2004 Emergence of a CD4+CD28− granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 173:1834–1841. 10.4049/jimmunol.173.3.183415265915
(AliahmadP., KadavalloreA., de la TorreB., KappesD., and KayeJ. 2011 TOX is required for development of the CD4 T cell lineage gene program. J. Immunol. 187:5931–5940. 10.4049/jimmunol.110147422021617)
AliahmadP., KadavalloreA., de la TorreB., KappesD., and KayeJ. 2011 TOX is required for development of the CD4 T cell lineage gene program. J. Immunol. 187:5931–5940. 10.4049/jimmunol.110147422021617, AliahmadP., KadavalloreA., de la TorreB., KappesD., and KayeJ. 2011 TOX is required for development of the CD4 T cell lineage gene program. J. Immunol. 187:5931–5940. 10.4049/jimmunol.110147422021617
Xin Zhou, J. Mcelhaney (2011)
Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans.Vaccine, 29 11
G. Hernandez-Hoyos, Michele Anderson, Chi Wang, E. Rothenberg, J. Alberola-Ila (2003)
GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation.Immunity, 19 1
E. Woolf, C. Xiao, O. Fainaru, J. Lotem, D. Rosen, V. Negreanu, Y. Bernstein, D. Goldenberg, O. Brenner, G. Berke, D. Levanon, Y. Groner (2003)
Runx3 and Runx1 are required for CD8 T cell development during thymopoiesisProceedings of the National Academy of Sciences of the United States of America, 100
T. Shingai, W. Ikeda, Shigeki Kakunaga, Koji Morimoto, K. Takekuni, S. Itoh, K. Satoh, M. Takeuchi, T. Imai, M. Monden, Y. Takai (2003)
Implications of Nectin-like Molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in Cell-Cell Adhesion and Transmembrane Protein Localization in Epithelial Cells*Journal of Biological Chemistry, 278
I. Taniuchi, Motomi Osato, Takeshi Egawa, M. Sunshine, S. Bae, T. Komori, Yoshiaki Ito, D. Littman (2002)
Differential Requirements for Runx Proteins in CD4 Repression and Epigenetic Silencing during T Lymphocyte DevelopmentCell, 111
Deborah Brown, Sarah Lee, M. Garcia-Hernandez, S. Swain (2012)
Multifunctional CD 4 Cells Expressing Gamma Interferon and Perforin Mediate Protection against Lethal Influenza Virus Infection
真貝 竜史 (2005)
Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells
J. Kennedy, A. Vicari, V. Saylor, S. Zurawski, N. Copeland, D. Gilbert, N. Jenkins, A. Zlotnik (2000)
A molecular analysis of NKT cells: identification of a class‐I restricted T cell‐associated molecule (CRTAM)Journal of Leukocyte Biology, 67
X. Gao, F. Liew, J. Tite (1989)
Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus.Journal of immunology, 143 9
(TakeuchiA., ItohY., TakumiA., IshiharaC., AraseN., YokosukaT., KosekiH., YamasakiS., TakaiY., MiyoshiJ., 2009 CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node. J. Immunol. 183:4220–4228. 10.4049/jimmunol.090124819752223)
TakeuchiA., ItohY., TakumiA., IshiharaC., AraseN., YokosukaT., KosekiH., YamasakiS., TakaiY., MiyoshiJ., 2009 CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node. J. Immunol. 183:4220–4228. 10.4049/jimmunol.090124819752223, TakeuchiA., ItohY., TakumiA., IshiharaC., AraseN., YokosukaT., KosekiH., YamasakiS., TakaiY., MiyoshiJ., 2009 CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node. J. Immunol. 183:4220–4228. 10.4049/jimmunol.090124819752223
M. Maimone, L. Morrison, V. Braciale, T. Braciale (1986)
Features of target cell lysis by class I and class II MHC-restricted cytolytic T lymphocytes.Journal of immunology, 137 11
H. Kornau, L. Schenker, M. Kennedy, P. Seeburg (1995)
Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.Science, 269 5231
Boles (2005)
The tumor suppressor TSLC1/NECL-2 triggers NK-cell and CD8+ T-cell responses through the cell-surface receptor CRTAMBlood., 106
(JellisonE.R., KimS.K., and WelshR.M. 2005 Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174:614–618. 10.4049/jimmunol.174.2.61415634878)
JellisonE.R., KimS.K., and WelshR.M. 2005 Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174:614–618. 10.4049/jimmunol.174.2.61415634878, JellisonE.R., KimS.K., and WelshR.M. 2005 Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174:614–618. 10.4049/jimmunol.174.2.61415634878
(O’ConnorW.Jr., KamanakaM., BoothC.J., TownT., NakaeS., IwakuraY., KollsJ.K., and FlavellR.A. 2009 A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10:603–609. 10.1038/ni.173619448631)
O’ConnorW.Jr., KamanakaM., BoothC.J., TownT., NakaeS., IwakuraY., KollsJ.K., and FlavellR.A. 2009 A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10:603–609. 10.1038/ni.173619448631, O’ConnorW.Jr., KamanakaM., BoothC.J., TownT., NakaeS., IwakuraY., KollsJ.K., and FlavellR.A. 2009 A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10:603–609. 10.1038/ni.173619448631
Kathleen Stuller, E. Flaño (2009)
CD4 T Cells Mediate Killing during Persistent Gammaherpesvirus 68 InfectionJournal of Virology, 83
(SongyangZ., FanningA.S., FuC., XuJ., MarfatiaS.M., ChishtiA.H., CromptonA., ChanA.C., AndersonJ.M., and CantleyL.C. 1997 Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 275:73–77. 10.1126/science.275.5296.738974395)
SongyangZ., FanningA.S., FuC., XuJ., MarfatiaS.M., ChishtiA.H., CromptonA., ChanA.C., AndersonJ.M., and CantleyL.C. 1997 Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 275:73–77. 10.1126/science.275.5296.738974395, SongyangZ., FanningA.S., FuC., XuJ., MarfatiaS.M., ChishtiA.H., CromptonA., ChanA.C., AndersonJ.M., and CantleyL.C. 1997 Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 275:73–77. 10.1126/science.275.5296.738974395
N. Aslan, C. Yurdaydın, J. Wiegand, Tim Greten, A. Ciner, M. Meyer, H. Heiken, B. Kuhlmann, T. Kaiser, H. Bozkaya, H. Tillmann, A. Bozdayi, Michael Manns, Heiner Wedemeyer (2006)
Cytotoxic CD4+ T cells in viral hepatitisJournal of Viral Hepatitis, 13
(MaimoneM.M., MorrisonL.A., BracialeV.L., and BracialeT.J. 1986 Features of target cell lysis by class I and class II MHC-restricted cytolytic T lymphocytes. J. Immunol. 137:3639–3643.3491143)
MaimoneM.M., MorrisonL.A., BracialeV.L., and BracialeT.J. 1986 Features of target cell lysis by class I and class II MHC-restricted cytolytic T lymphocytes. J. Immunol. 137:3639–3643.3491143, MaimoneM.M., MorrisonL.A., BracialeV.L., and BracialeT.J. 1986 Features of target cell lysis by class I and class II MHC-restricted cytolytic T lymphocytes. J. Immunol. 137:3639–3643.3491143
(PaiS.Y., TruittM.L., TingC.N., LeidenJ.M., GlimcherL.H., and HoI.C. 2003 Critical roles for transcription factor GATA-3 in thymocyte development. Immunity. 19:863–875. 10.1016/S1074-7613(03)00328-514670303)
PaiS.Y., TruittM.L., TingC.N., LeidenJ.M., GlimcherL.H., and HoI.C. 2003 Critical roles for transcription factor GATA-3 in thymocyte development. Immunity. 19:863–875. 10.1016/S1074-7613(03)00328-514670303, PaiS.Y., TruittM.L., TingC.N., LeidenJ.M., GlimcherL.H., and HoI.C. 2003 Critical roles for transcription factor GATA-3 in thymocyte development. Immunity. 19:863–875. 10.1016/S1074-7613(03)00328-514670303
(XieY., AkpinarliA., MarisC., HipkissE.L., LaneM., KwonE.K., MuranskiP., RestifoN.P., and AntonyP.A. 2010 Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207:651–667. 10.1084/jem.2009192120156973)
XieY., AkpinarliA., MarisC., HipkissE.L., LaneM., KwonE.K., MuranskiP., RestifoN.P., and AntonyP.A. 2010 Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207:651–667. 10.1084/jem.2009192120156973, XieY., AkpinarliA., MarisC., HipkissE.L., LaneM., KwonE.K., MuranskiP., RestifoN.P., and AntonyP.A. 2010 Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207:651–667. 10.1084/jem.2009192120156973
C. Thelemann, R. Eren, M. Coutaz, Jennifer Brasseit, H. Bouzourène, M. Rosa, A. Duval, C. Lavanchy, Vanessa Mack, C. Mueller, W. Reith, H. Acha-Orbea (2014)
Interferon-γ Induces Expression of MHC Class II on Intestinal Epithelial Cells and Protects Mice from ColitisPLoS ONE, 9
S. Szabo, Sean Kim, G. Costa, Xiankui Zhang, C. Fathman, L. Glimcher (2000)
A Novel Transcription Factor, T-bet, Directs Th1 Lineage CommitmentCell, 100
(ThelemannC., ErenR.O., CoutazM., BrasseitJ., BouzoureneH., RosaM., DuvalA., LavanchyC., MackV., MuellerC., 2014 Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One. 9:e86844 10.1371/journal.pone.008684424489792)
ThelemannC., ErenR.O., CoutazM., BrasseitJ., BouzoureneH., RosaM., DuvalA., LavanchyC., MackV., MuellerC., 2014 Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One. 9:e86844 10.1371/journal.pone.008684424489792, ThelemannC., ErenR.O., CoutazM., BrasseitJ., BouzoureneH., RosaM., DuvalA., LavanchyC., MackV., MuellerC., 2014 Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One. 9:e86844 10.1371/journal.pone.008684424489792
(WangL., WildtK.F., CastroE., XiongY., FeigenbaumL., TessarolloL., and BosselutR. 2008 The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity. 29:876–887. 10.1016/j.immuni.2008.09.01919062319)
WangL., WildtK.F., CastroE., XiongY., FeigenbaumL., TessarolloL., and BosselutR. 2008 The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity. 29:876–887. 10.1016/j.immuni.2008.09.01919062319, WangL., WildtK.F., CastroE., XiongY., FeigenbaumL., TessarolloL., and BosselutR. 2008 The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity. 29:876–887. 10.1016/j.immuni.2008.09.01919062319
(AraseN., TakeuchiA., UnnoM., HiranoS., YokosukaT., AraseH., and SaitoT. 2005 Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int. Immunol. 17:1227–1237. 10.1093/intimm/dxh29916091383)
AraseN., TakeuchiA., UnnoM., HiranoS., YokosukaT., AraseH., and SaitoT. 2005 Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int. Immunol. 17:1227–1237. 10.1093/intimm/dxh29916091383, AraseN., TakeuchiA., UnnoM., HiranoS., YokosukaT., AraseH., and SaitoT. 2005 Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int. Immunol. 17:1227–1237. 10.1093/intimm/dxh29916091383
Immunol
Guangping Sun, Xiaolong Liu, Peter Mercado, S Jenkinson, Magdalini Kypriotou, L. Feigenbaum, P. Galéra, R. Bosselut (2005)
The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selectionNature Immunology, 6
(ZaundersJ.J., DyerW.B., WangB., MunierM.L., Miranda-SaksenaM., NewtonR., MooreJ., MackayC.R., CooperD.A., SaksenaN.K., and KelleherA.D. 2004 Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood. 103:2238–2247. 10.1182/blood-2003-08-276514645006)
ZaundersJ.J., DyerW.B., WangB., MunierM.L., Miranda-SaksenaM., NewtonR., MooreJ., MackayC.R., CooperD.A., SaksenaN.K., and KelleherA.D. 2004 Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood. 103:2238–2247. 10.1182/blood-2003-08-276514645006, ZaundersJ.J., DyerW.B., WangB., MunierM.L., Miranda-SaksenaM., NewtonR., MooreJ., MackayC.R., CooperD.A., SaksenaN.K., and KelleherA.D. 2004 Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood. 103:2238–2247. 10.1182/blood-2003-08-276514645006
D. Mucida, M. Husain, Sawako Muroi, F. Wijk, Ryo Shinnakasu, Y. Naoe, B. Reis, Yujun Huang, F. Lambolez, Michael Docherty, A. Attinger, J. Shui, Gisen Kim, C. Lena, S. Sakaguchi, Chizuko Miyamoto, Peng Wang, K. Atarashi, Yunji Park, T. Nakayama, K. Honda, W. Ellmeier, M. Kronenberg, I. Taniuchi, H. Cheroutre (2013)
Transcriptional Reprogramming of Mature CD4+ T helper Cells generates distinct MHC class II-restricted Cytotoxic T LymphocytesNature immunology, 14
(SzaboS.J., SullivanB.M., PengS.L., and GlimcherL.H. 2003 Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21:713–758. 10.1146/annurev.immunol.21.120601.14094212500979)
SzaboS.J., SullivanB.M., PengS.L., and GlimcherL.H. 2003 Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21:713–758. 10.1146/annurev.immunol.21.120601.14094212500979, SzaboS.J., SullivanB.M., PengS.L., and GlimcherL.H. 2003 Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21:713–758. 10.1146/annurev.immunol.21.120601.14094212500979
J. O’Shea, W. Paul (2010)
Mechanisms Underlying Lineage Commitment and Plasticity of Helper CD4+ T CellsScience, 327
S. Pai, Morgan Truitt, C. Ting, J. Leiden, L. Glimcher, I. Ho (2003)
Critical roles for transcription factor GATA-3 in thymocyte development.Immunity, 19 6
N. Arase, A. Takeuchi, M. Unno, Satoshi Hirano, T. Yokosuka, H. Arase, T. Saito (2005)
Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells.International immunology, 17 9
Xiao He, Xi He, V. Dave, Yi Zhang, X. Hua, E. Nicolas, Weihong Xu, B. Roe, D. Kappes (2005)
The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitmentNature, 433
Erika Pearce, Alan Mullen, G. Martins, C. Krawczyk, Anne Hutchins, Valerie Zediak, Monica Banica, Catherine DiCioccio, Darrick Gross, C. Mao, Hao Shen, N. Cereb, S. Yang, T. Lindsten, J. Rossant, C. Hunter, S. Reiner (2003)
Control of Effector CD8+ T Cell Function by the Transcription Factor EomesoderminScience, 302
A. Lukacher, L. Morrison, V. Braciale, B. Malissen, T. Braciale (1985)
Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clonesThe Journal of Experimental Medicine, 162
(LukacherA.E., MorrisonL.A., BracialeV.L., MalissenB., and BracialeT.J. 1985 Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones. J. Exp. Med. 162:171–187. 10.1084/jem.162.1.1712409206)
LukacherA.E., MorrisonL.A., BracialeV.L., MalissenB., and BracialeT.J. 1985 Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones. J. Exp. Med. 162:171–187. 10.1084/jem.162.1.1712409206, LukacherA.E., MorrisonL.A., BracialeV.L., MalissenB., and BracialeT.J. 1985 Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones. J. Exp. Med. 162:171–187. 10.1084/jem.162.1.1712409206
(YehJ.H., SidhuS.S., and ChanA.C. 2008 Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell. 132:846–859. 10.1016/j.cell.2008.01.01318329370)
YehJ.H., SidhuS.S., and ChanA.C. 2008 Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell. 132:846–859. 10.1016/j.cell.2008.01.01318329370, YehJ.H., SidhuS.S., and ChanA.C. 2008 Regulation of a late phase of T cell polarity and effector functions by Crtam. Cell. 132:846–859. 10.1016/j.cell.2008.01.01318329370
E. Leeuwen, E. Remmerswaal, Mireille Vossen, A. Rowshani, P. Dillen, R. Lier, I. Berge (2004)
Emergence of a CD4+CD28− Granzyme B+, Cytomegalovirus-Specific T Cell Subset after Recovery of Primary Cytomegalovirus InfectionThe Journal of Immunology, 173
N. Marshall, S. Swain (2011)
Cytotoxic CD4 T Cells in Antiviral ImmunityJournal of Biomedicine and Biotechnology, 2011
(GalibertL., DiemerG.S., LiuZ., JohnsonR.S., SmithJ.L., WalzerT., ComeauM.R., RauchC.T., WolfsonM.F., SorensenR.A., 2005 Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J. Biol. Chem. 280:21955–21964. 10.1074/jbc.M50209520015781451)
GalibertL., DiemerG.S., LiuZ., JohnsonR.S., SmithJ.L., WalzerT., ComeauM.R., RauchC.T., WolfsonM.F., SorensenR.A., 2005 Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J. Biol. Chem. 280:21955–21964. 10.1074/jbc.M50209520015781451, GalibertL., DiemerG.S., LiuZ., JohnsonR.S., SmithJ.L., WalzerT., ComeauM.R., RauchC.T., WolfsonM.F., SorensenR.A., 2005 Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J. Biol. Chem. 280:21955–21964. 10.1074/jbc.M50209520015781451
(ItoH., and FathmanC.G. 1997 CD45RBhigh CD4+ T cells from IFN-γ knockout mice do not induce wasting disease. J. Autoimmun. 10:455–459. 10.1016/S0896-8411(97)90152-99376073)
ItoH., and FathmanC.G. 1997 CD45RBhigh CD4+ T cells from IFN-γ knockout mice do not induce wasting disease. J. Autoimmun. 10:455–459. 10.1016/S0896-8411(97)90152-99376073, ItoH., and FathmanC.G. 1997 CD45RBhigh CD4+ T cells from IFN-γ knockout mice do not induce wasting disease. J. Autoimmun. 10:455–459. 10.1016/S0896-8411(97)90152-99376073
(WagnerH., Starzinski-PowitzA., JungH., and RöllinghoffM. 1977 Induction of I region-restricted hapten-specific cytotoxic T lymphocytes. J. Immunol. 119:1365–1368.302282)
WagnerH., Starzinski-PowitzA., JungH., and RöllinghoffM. 1977 Induction of I region-restricted hapten-specific cytotoxic T lymphocytes. J. Immunol. 119:1365–1368.302282, WagnerH., Starzinski-PowitzA., JungH., and RöllinghoffM. 1977 Induction of I region-restricted hapten-specific cytotoxic T lymphocytes. J. Immunol. 119:1365–1368.302282
Conleth Feighery, Peter Stastny (1979)
HLA-D region-associated determinants serve as targets for human cell- mediated lysisThe Journal of Experimental Medicine, 149
(KornauH.C., SchenkerL.T., KennedyM.B., and SeeburgP.H. 1995 Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 269:1737–1740. 10.1126/science.75699057569905)
KornauH.C., SchenkerL.T., KennedyM.B., and SeeburgP.H. 1995 Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 269:1737–1740. 10.1126/science.75699057569905, KornauH.C., SchenkerL.T., KennedyM.B., and SeeburgP.H. 1995 Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science. 269:1737–1740. 10.1126/science.75699057569905
J. Thibodeau, M. Bourgeois-Daigneault, R. Lapointe (2012)
Targeting the MHC Class II antigen presentation pathway in cancer immunotherapyOncoimmunology, 1
筋野 智久 (2012)
Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells
L. Glimcher, M. Townsend, B. Sullivan, Graham Lord (2004)
Recent developments in the transcriptional regulation of cytolytic effector cellsNature Reviews Immunology, 4
(BrownD.M., KamperschroerC., DilzerA.M., RobertsD.M., and SwainS.L. 2009 IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell. Immunol. 257:69–79. 10.1016/j.cellimm.2009.03.00219338979)
BrownD.M., KamperschroerC., DilzerA.M., RobertsD.M., and SwainS.L. 2009 IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell. Immunol. 257:69–79. 10.1016/j.cellimm.2009.03.00219338979, BrownD.M., KamperschroerC., DilzerA.M., RobertsD.M., and SwainS.L. 2009 IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell. Immunol. 257:69–79. 10.1016/j.cellimm.2009.03.00219338979
(2013)
Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4 + T cell immunity
(KennedyJ., VicariA.P., SaylorV., ZurawskiS.M., CopelandN.G., GilbertD.J., JenkinsN.A., and ZlotnikA. 2000 A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J. Leukoc. Biol. 67:725–734.10811014)
KennedyJ., VicariA.P., SaylorV., ZurawskiS.M., CopelandN.G., GilbertD.J., JenkinsN.A., and ZlotnikA. 2000 A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J. Leukoc. Biol. 67:725–734.10811014, KennedyJ., VicariA.P., SaylorV., ZurawskiS.M., CopelandN.G., GilbertD.J., JenkinsN.A., and ZlotnikA. 2000 A molecular analysis of NKT cells: identification of a class-I restricted T cell-associated molecule (CRTAM). J. Leukoc. Biol. 67:725–734.10811014
(SzaboS.J., KimS.T., CostaG.L., ZhangX., FathmanC.G., and GlimcherL.H. 2000 A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 100:655–669. 10.1016/S0092-8674(00)80702-310761931)
SzaboS.J., KimS.T., CostaG.L., ZhangX., FathmanC.G., and GlimcherL.H. 2000 A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 100:655–669. 10.1016/S0092-8674(00)80702-310761931, SzaboS.J., KimS.T., CostaG.L., ZhangX., FathmanC.G., and GlimcherL.H. 2000 A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 100:655–669. 10.1016/S0092-8674(00)80702-310761931
S. Quezada, T. Simpson, K. Peggs, T. Merghoub, J. Vider, Xiaozhou Fan, R. Blasberg, H. Yagita, P. Muranski, P. Antony, N. Restifo, J. Allison (2010)
Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hostsThe Journal of Experimental Medicine, 207
(FeigheryC., and StastnyP. 1979 HLA-D region-associated determinants serve as targets for human cell-mediated lysis. J. Exp. Med. 149:485–494. 10.1084/jem.149.2.48584045)
FeigheryC., and StastnyP. 1979 HLA-D region-associated determinants serve as targets for human cell-mediated lysis. J. Exp. Med. 149:485–494. 10.1084/jem.149.2.48584045, FeigheryC., and StastnyP. 1979 HLA-D region-associated determinants serve as targets for human cell-mediated lysis. J. Exp. Med. 149:485–494. 10.1084/jem.149.2.48584045
J. Yeh, S. Sidhu, A. Chan (2008)
Regulation of a Late Phase of T Cell Polarity and Effector Functions by CrtamCell, 132
V. Cortez, L. Cervantes-Barragan, Christina Song, S. Gilfillan, Keely McDonald, R. Tussiwand, B. Edelson, Y. Murakami, K. Murphy, R. Newberry, L. Sibley, M. Colonna (2014)
CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infectionThe Journal of Experimental Medicine, 211
(WoolfE., XiaoC., FainaruO., LotemJ., RosenD., NegreanuV., BernsteinY., GoldenbergD., BrennerO., BerkeG., 2003 Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA. 100:7731–7736. 10.1073/pnas.123242010012796513)
WoolfE., XiaoC., FainaruO., LotemJ., RosenD., NegreanuV., BernsteinY., GoldenbergD., BrennerO., BerkeG., 2003 Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA. 100:7731–7736. 10.1073/pnas.123242010012796513, WoolfE., XiaoC., FainaruO., LotemJ., RosenD., NegreanuV., BernsteinY., GoldenbergD., BrennerO., BerkeG., 2003 Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. USA. 100:7731–7736. 10.1073/pnas.123242010012796513
Hye-Ran Kim, B. Jeon, Hyun-Su Lee, S. Im, M. Araki, K. Araki, K. Yamamura, S. Choi, Do-Sim Park, C. Jun (2011)
IGSF4 is a novel TCR ζ-chain–interacting protein that enhances TCR-mediated signalingThe Journal of Experimental Medicine, 208
(2005)
Oncogenes and Tumor Suppressors (795 articles) Reviews in Translational Hematology (58 articles) Signal Transduction (1930 articles)
(BrownD.M., LeeS., Garcia-HernandezM.L., and SwainS.L. 2012 Multifunctional CD4 cells expressing γ interferon and perforin mediate protection against lethal influenza virus infection. J. Virol. 86:6792–6803. 10.1128/JVI.07172-1122491469)
BrownD.M., LeeS., Garcia-HernandezM.L., and SwainS.L. 2012 Multifunctional CD4 cells expressing γ interferon and perforin mediate protection against lethal influenza virus infection. J. Virol. 86:6792–6803. 10.1128/JVI.07172-1122491469, BrownD.M., LeeS., Garcia-HernandezM.L., and SwainS.L. 2012 Multifunctional CD4 cells expressing γ interferon and perforin mediate protection against lethal influenza virus infection. J. Virol. 86:6792–6803. 10.1128/JVI.07172-1122491469
E. Jellison, Sung-kwon Kim, R. Welsh (2005)
Cutting Edge: MHC Class II-Restricted Killing In Vivo during Viral Infection1The Journal of Immunology, 174
Lie Wang, Kathryn Wildt, Ehydel Castro, Y. Xiong, L. Feigenbaum, L. Tessarollo, R. Bosselut (2008)
The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells.Immunity, 29 6
(MucidaD., HusainM.M., MuroiS., van WijkF., ShinnakasuR., NaoeY., ReisB.S., HuangY., LambolezF., DochertyM., 2013 Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14:281–289. 10.1038/ni.252323334788)
MucidaD., HusainM.M., MuroiS., van WijkF., ShinnakasuR., NaoeY., ReisB.S., HuangY., LambolezF., DochertyM., 2013 Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14:281–289. 10.1038/ni.252323334788, MucidaD., HusainM.M., MuroiS., van WijkF., ShinnakasuR., NaoeY., ReisB.S., HuangY., LambolezF., DochertyM., 2013 Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14:281–289. 10.1038/ni.252323334788
(AslanN., YurdaydinC., WiegandJ., GretenT., CinerA., MeyerM.F., HeikenH., KuhlmannB., KaiserT., BozkayaH., 2006 Cytotoxic CD4 T cells in viral hepatitis. J. Viral Hepat. 13:505–514. 10.1111/j.1365-2893.2006.00723.x16901280)
AslanN., YurdaydinC., WiegandJ., GretenT., CinerA., MeyerM.F., HeikenH., KuhlmannB., KaiserT., BozkayaH., 2006 Cytotoxic CD4 T cells in viral hepatitis. J. Viral Hepat. 13:505–514. 10.1111/j.1365-2893.2006.00723.x16901280, AslanN., YurdaydinC., WiegandJ., GretenT., CinerA., MeyerM.F., HeikenH., KuhlmannB., KaiserT., BozkayaH., 2006 Cytotoxic CD4 T cells in viral hepatitis. J. Viral Hepat. 13:505–514. 10.1111/j.1365-2893.2006.00723.x16901280
(SunG., LiuX., MercadoP., JenkinsonS.R., KypriotouM., FeigenbaumL., GaléraP., and BosselutR. 2005 The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6:373–381. 10.1038/ni118315750595)
SunG., LiuX., MercadoP., JenkinsonS.R., KypriotouM., FeigenbaumL., GaléraP., and BosselutR. 2005 The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6:373–381. 10.1038/ni118315750595, SunG., LiuX., MercadoP., JenkinsonS.R., KypriotouM., FeigenbaumL., GaléraP., and BosselutR. 2005 The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6:373–381. 10.1038/ni118315750595
Deborah Brown, Sarah Lee, M. Garcia-Hernandez, S. Swain (2012)
Multifunctional CD4 Cells Expressing Gamma Interferon and Perforin Mediate Protection against Lethal Influenza Virus InfectionJournal of Virology, 86
(KuramochiM., FukuharaH., NobukuniT., KanbeT., MaruyamaT., GhoshH.P., PletcherM., IsomuraM., OnizukaM., KitamuraT., 2001 TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat. Genet. 27:427–430. 10.1038/8693411279526)
KuramochiM., FukuharaH., NobukuniT., KanbeT., MaruyamaT., GhoshH.P., PletcherM., IsomuraM., OnizukaM., KitamuraT., 2001 TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat. Genet. 27:427–430. 10.1038/8693411279526, KuramochiM., FukuharaH., NobukuniT., KanbeT., MaruyamaT., GhoshH.P., PletcherM., IsomuraM., OnizukaM., KitamuraT., 2001 TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat. Genet. 27:427–430. 10.1038/8693411279526
L. Galibert, G. Diemer, Zhi Liu, Richard Johnson, Jeffrey Smith, T. Walzer, M. Comeau, C. Rauch, M. Wolfson, R. Sorensen, A. Vries, D. Branstetter, R. Koelling, J. Scholler, W. Fanslow, P. Baum, J. Derry, Weiling Yan (2005)
Nectin-like Protein 2 Defines a Subset of T-cell Zone Dendritic Cells and Is a Ligand for Class-I-restricted T-cell-associated Molecule*♦Journal of Biological Chemistry, 280
(StullerK.A., and FlañoE. 2009 CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J. Virol. 83:4700–4703. 10.1128/JVI.02240-0819244319)
StullerK.A., and FlañoE. 2009 CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J. Virol. 83:4700–4703. 10.1128/JVI.02240-0819244319, StullerK.A., and FlañoE. 2009 CD4 T cells mediate killing during persistent gammaherpesvirus 68 infection. J. Virol. 83:4700–4703. 10.1128/JVI.02240-0819244319
(ShingaiT., IkedaW., KakunagaS., MorimotoK., TakekuniK., ItohS., SatohK., TakeuchiM., ImaiT., MondenM., and TakaiY. 2003 Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J. Biol. Chem. 278:35421–35427. 10.1074/jbc.M30538720012826663)
ShingaiT., IkedaW., KakunagaS., MorimotoK., TakekuniK., ItohS., SatohK., TakeuchiM., ImaiT., MondenM., and TakaiY. 2003 Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J. Biol. Chem. 278:35421–35427. 10.1074/jbc.M30538720012826663, ShingaiT., IkedaW., KakunagaS., MorimotoK., TakekuniK., ItohS., SatohK., TakeuchiM., ImaiT., MondenM., and TakaiY. 2003 Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J. Biol. Chem. 278:35421–35427. 10.1074/jbc.M30538720012826663
(KimH.R., JeonB.H., LeeH.S., ImS.H., ArakiM., ArakiK., YamamuraK., ChoiS.C., ParkD.S., and JunC.D. 2011 IGSF4 is a novel TCR ζ-chain-interacting protein that enhances TCR-mediated signaling. J. Exp. Med. 208:2545–2560. 10.1084/jem.2011085322084409)
KimH.R., JeonB.H., LeeH.S., ImS.H., ArakiM., ArakiK., YamamuraK., ChoiS.C., ParkD.S., and JunC.D. 2011 IGSF4 is a novel TCR ζ-chain-interacting protein that enhances TCR-mediated signaling. J. Exp. Med. 208:2545–2560. 10.1084/jem.2011085322084409, KimH.R., JeonB.H., LeeH.S., ImS.H., ArakiM., ArakiK., YamamuraK., ChoiS.C., ParkD.S., and JunC.D. 2011 IGSF4 is a novel TCR ζ-chain-interacting protein that enhances TCR-mediated signaling. J. Exp. Med. 208:2545–2560. 10.1084/jem.2011085322084409
(ZhouX., and McElhaneyJ.E. 2011 Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine. 29:2169–2177. 10.1016/j.vaccine.2010.12.02921353149)
ZhouX., and McElhaneyJ.E. 2011 Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine. 29:2169–2177. 10.1016/j.vaccine.2010.12.02921353149, ZhouX., and McElhaneyJ.E. 2011 Age-related changes in memory and effector T cells responding to influenza A/H3N2 and pandemic A/H1N1 strains in humans. Vaccine. 29:2169–2177. 10.1016/j.vaccine.2010.12.02921353149
(EshimaK., ChibaS., SuzukiH., KokuboK., KobayashiH., IizukaM., IwabuchiK., and ShinoharaN. 2012 Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4+ Th cells cytotoxic by activating both perforin- and FasL-pathways. Immunol. Lett. 144:7–15. 10.1016/j.imlet.2012.02.01322425747)
EshimaK., ChibaS., SuzukiH., KokuboK., KobayashiH., IizukaM., IwabuchiK., and ShinoharaN. 2012 Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4+ Th cells cytotoxic by activating both perforin- and FasL-pathways. Immunol. Lett. 144:7–15. 10.1016/j.imlet.2012.02.01322425747, EshimaK., ChibaS., SuzukiH., KokuboK., KobayashiH., IizukaM., IwabuchiK., and ShinoharaN. 2012 Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4+ Th cells cytotoxic by activating both perforin- and FasL-pathways. Immunol. Lett. 144:7–15. 10.1016/j.imlet.2012.02.01322425747
(GaoX.M., LiewF.Y., and TiteJ.P. 1989 Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus. J. Immunol. 143:3007–3014.2478631)
GaoX.M., LiewF.Y., and TiteJ.P. 1989 Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus. J. Immunol. 143:3007–3014.2478631, GaoX.M., LiewF.Y., and TiteJ.P. 1989 Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus. J. Immunol. 143:3007–3014.2478631
(CortezV.S., Cervantes-BarraganL., SongC., GilfillanS., McDonaldK.G., TussiwandR., EdelsonB.T., MurakamiY., MurphyK.M., NewberryR.D., 2014 CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. J. Exp. Med. 211:623–633. 10.1084/jem.2013090424687959)
CortezV.S., Cervantes-BarraganL., SongC., GilfillanS., McDonaldK.G., TussiwandR., EdelsonB.T., MurakamiY., MurphyK.M., NewberryR.D., 2014 CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. J. Exp. Med. 211:623–633. 10.1084/jem.2013090424687959, CortezV.S., Cervantes-BarraganL., SongC., GilfillanS., McDonaldK.G., TussiwandR., EdelsonB.T., MurakamiY., MurphyK.M., NewberryR.D., 2014 CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. J. Exp. Med. 211:623–633. 10.1084/jem.2013090424687959
Takeuchi et al. demonstrate that CRTAM identifies CD4 T cells with cytotoxic function, and present new insights into CD4+CTL development.
The Journal of Experimental Medicine – Pubmed Central
Published: Jan 11, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.