Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Egorov, Bassam Hamam, E. Fransén, M. Hasselmo, A. Alonso (2002)
Graded persistent activity in entorhinal cortex neuronsNature, 420
Roland Jones (1993)
Entorhinal-hippocampal connections: a speculative view of their functionTrends in Neurosciences, 16
Derek Garden, Paul Dodson, Cian O’Donnell, Melanie White, M. Nolan (2008)
Tuning of Synaptic Integration in the Medial Entorhinal Cortex to the Organization of Grid Cell Firing FieldsNeuron, 60
Bassam Hamam, Timothy Kennedy, Angel Alonso, D. Amaral (2000)
Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortexJournal of Comparative Neurology, 418
F. Du, ’. Eid, E. Lothman, la Christer, R. Schwartz (1995)
Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy, 15
T. Iijima, M. Witter, M. Ichikawa, T. Tominaga, R. Kajiwara, G. Matsumoto (1996)
Entorhinal-Hippocampal Interactions Revealed by Real-Time ImagingScience, 272
HM Brew, I. Forsythe (1995)
Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse, 15
J. Chrobak, György Buzsáki (1994)
Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat, 14
T. Gloveli, T. Dugladze, D. Schmitz, U. Heinemann (2001)
Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrusEuropean Journal of Neuroscience, 13
C. Ikonomidou, Waldemar Turski, Z. Bortolotto, E. Cavalheiro (2004)
Intractable Epilepsy
E. Tolner, F. Kloosterman, E. Vliet, M. Witter, F. Silva, J. Gorter (2005)
Presubiculum Stimulation In Vivo Evokes Distinct Oscillations in Superficial and Deep Entorhinal Cortex Layers in Chronic Epileptic RatsThe Journal of Neuroscience, 25
B. Connors, M. Gutnick (1990)
Intrinsic firing patterns of diverse neocortical neuronsTrends in Neurosciences, 13
Menno Wouterlood (2003)
The Parahippocampal Region: Organization and Role in Cognitive FunctionEuropean Journal of Neurology, 10
B. Cauli, J. Porter, K. Tsuzuki, B. Lambolez, J. Rossier, B. Quenet, E. Audinat (2000)
Classification of fusiform neocortical interneurons based on unsupervised clustering.Proceedings of the National Academy of Sciences of the United States of America, 97 11
L. Prida, F. Suárez, M. Pozo (2003)
Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitroHippocampus, 13
M. Steriade (2004)
Neocortical cell classes are flexible entitiesNature Reviews Neuroscience, 5
E. Kandel, W. Spencer (1961)
Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing.Journal of neurophysiology, 24
B. Bean (2007)
The action potential in mammalian central neuronsNature Reviews Neuroscience, 8
N. Agrawal, A. Alonso, D. Ragsdale (2003)
Increased Persistent Sodium Currents in Rat Entorhinal Cortex Layer V Neurons in a Post–Status Epilepticus Model of Temporal Lobe EpilepsyEpilepsia, 44
S. Linden, F. Silva (1998)
Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitroEuropean Journal of Neuroscience, 10
C. Köhler (1985)
A projection from the deep layers of the entorhinal area to the hippocampal formation in the rat brainNeuroscience Letters, 56
Cathrin Canto, M. Witter (2012)
Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortexHippocampus, 22
F. Silva, M. Witter, P. Boeijinga, A. Lohman (1990)
Anatomic organization and physiology of the limbic cortex.Physiological reviews, 70 2
Jian Yang, G. Woodhall, Roland Jones (2006)
Tonic Facilitation of Glutamate Release by Presynaptic NR2B-Containing NMDA Receptors Is Increased in the Entorhinal Cortex of Chronically Epileptic RatsThe Journal of Neuroscience, 26
C. Ribak, L. Seress, P. Weber, C. Epstein, Thomas Henry, R. Bakay (1998)
Alumina gel injections into the temporal lobe of rhesus monkeys cause complex partial seizures and morphological changes found in human temporal lobe epilepsyJournal of Comparative Neurology, 401
R. Racine (1972)
Modification of seizure activity by electrical stimulation. II. Motor seizure.Electroencephalography and clinical neurophysiology, 32 3
Sanjay Kumar, P. Buckmaster (2006)
Hyperexcitability, Interneurons, and Loss of GABAergic Synapses in Entorhinal Cortex in a Model of Temporal Lobe EpilepsyThe Journal of Neuroscience, 26
R. Burwell, D. Amaral (1998)
Perirhinal and postrhinal cortices of the rat: Interconnectivity and connections with the entorhinal cortexJournal of Comparative Neurology, 391
B. Connors, M. Gutnick, D. Prince (1982)
Electrophysiological properties of neocortical neurons in vitro.Journal of neurophysiology, 48 6
Brian Halabisky, Fran Shen, J. Huguenard, D. Prince (2006)
Electrophysiological classification of somatostatin-positive interneurons in mouse sensorimotor cortex.Journal of neurophysiology, 96 2
C. Wilson, M. Isokawa, T. Babb, P. Crandall (1990)
Functional connections in the human temporal lobeExperimental Brain Research, 82
J. Ward (1963)
Hierarchical Grouping to Optimize an Objective FunctionJournal of the American Statistical Association, 58
C. Köhler (1986)
Intrinsic connections of the retrohippocampal region in the rat brain. II. The medial entorhinal areaJournal of Comparative Neurology, 246
A. Bragin, Gabor Jand, Z. Nadasdy, M. Landeghem, GYiiRGY Buzsaki (1995)
Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat.Journal of neurophysiology, 73 4
Tonic facilitation of glutamate release by presynaptic 790
J. Bear, N. Fountain, E. Lothman (1996)
Responses of the superficial entorhinal cortex in vitro in slices from naive and chronically epileptic rats.Journal of neurophysiology, 76 5
T. Deller, Albert Martı́nez, R. Nitsch, M. Frotscher (1996)
A Novel Entorhinal Projection to the Rat Dentate Gyrus: Direct Innervation of Proximal Dendrites and Cell Bodies of Granule Cells and GABAergic NeuronsThe Journal of Neuroscience, 16
M. Gutnick, B. Connors, D. Prince (1982)
Mechanisms of neocortical epileptogenesis in vitro.Journal of neurophysiology, 48 6
B. Smith, F. Dudek (2001)
Short- and long-term changes in CA1 network excitability after kainate treatment in rats.Journal of neurophysiology, 85 1
P. Rutecki, R. Grossman, D. Armstrong, Susan Irish-Loewen (1989)
Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures.Journal of neurosurgery, 70 5
H. Scharfman, J. Goodman, F. Du, R. Schwarcz (1998)
Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss.Journal of neurophysiology, 80 6
M. Witter, H. Groenewegen, F. Silva, A. Lohman (1989)
Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal regionProgress in Neurobiology, 33
T. Haeften, Luciënne Baks-te-Bulte, P. Goede, F. Wouterlood, M. Witter (2003)
Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the ratHippocampus, 13
R. Bartesaghi, T. Gessi, L. Sperti (1989)
Electrophysiological analysis of the hippocampal projections to the entorhinal areaNeuroscience, 30
A. Dhillon, R. Jones (2000)
Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitroNeuroscience, 99
K. Lingenhöhl, D. Finch (2004)
Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domainsExperimental Brain Research, 84
R. Sloviter (1991)
Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsyHippocampus, 1
Sanjay Kumar, Xiaoming Jin, P. Buckmaster, J. Huguenard (2007)
Recurrent Circuits in Layer II of Medial Entorhinal Cortex in a Model of Temporal Lobe EpilepsyThe Journal of Neuroscience, 27
A. Agmon, B. Connors (1992)
Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex, 12
F. Wouterlood (2002)
Spotlight on the neurones (I): cell types, local connectivity, microcircuits, and distribution of markers
M. Witter (1993)
Organization of the entorhinal—hippocampal system: A review of current anatomical dataHippocampus, 3
R.S.G. Jones, J.D.C. Lambert (2004)
The role of excitatory amino acid receptors in the propagation of epileptiform discharges from the entorhinal cortex to the dentate gyrus in vitroExperimental Brain Research, 80
G. Buzsáki (1996)
The hippocampo-neocortical dialogue.Cerebral cortex, 6 2
P. Schwartzkroin, A. Mueller (1987)
Electrophysiology of Hippocampal Neurons
D. Bragin, J. Sanderson, S. Peterson, J. Connor, W. Müller (2009)
Development of epileptiform excitability in the deep entorhinal cortex after status epilepticusEuropean Journal of Neuroscience, 30
C. Dickson, J. Magistretti, Mark Shalinsky, Bassam Hamam, A. Alonso (2000)
Oscillatory Activity in Entorhinal Neurons and Circuits: Mechanisms and FunctionAnnals of the New York Academy of Sciences, 911
T. Gloveli, A. Egorov, D. Schmitz, U. Heinemann, W. Müller (1999)
Carbachol‐induced changes in excitability and [Ca2+]i signalling in projection cells of medial entorhinal cortex layers II and IIIEuropean Journal of Neuroscience, 11
F. Du, W. Whetsell, B. Abou-Khalil, B. Blumenkopf, E. Lothman, R. Schwarcz (1993)
Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsyEpilepsy Research, 16
G. Ascoli, L. Alonso-Nanclares, S. Anderson, G. Barrionuevo, R. Benavides-Piccione, A. Burkhalter, G. Buzsáki, B. Cauli, J. DeFelipe, A. Fairén, D. Feldmeyer, G. Fishell, Y. Frégnac, T. Freund, D. Gardner, E. Gardner, J. Goldberg, M. Helmstaedter, S. Hestrin, F. Karube, Z. Kisvárday, B. Lambolez, D. Lewis, O. Marín, H. Markram, A. Muñoz, Adam Packer, C. Petersen, K. Rockland, J. Rossier, B. Rudy, P. Somogyi, J. Staiger, G. Tamás, A. Thomson, Maria Toledo-Rodriguez, Yun Wang, D. West, R. Yuste (2008)
Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortexNature Reviews Neuroscience, 9
A. Alonso, R. Klink (1993)
Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II.Journal of neurophysiology, 70 1
T. Haeften, B. Jorritsma-Byham, M. Witter (1995)
Quantitative morphological analysis of subicular terminals in the rat entorhinal cortexHippocampus, 5
P. Guzman, Y. Inaba, E. Baldelli, M. Curtis, G. Biagini, M. Avoli (2008)
Network hyperexcitability within the deep layers of the pilocarpine‐treated rat entorhinal cortexThe Journal of Physiology, 586
Clayton Dickson, A. Mena, Angel Alonso (1997)
Electroresponsiveness of medial entorhinal cortex layer III neurons in vitroNeuroscience, 81
M. Stewart (1999)
Columnar activity supports propagation of population bursts in slices of rat entorhinal cortexBrain Research, 830
C. Dickson, A. Alonso (1997)
Muscarinic Induction of Synchronous Population Activity in the Entorhinal CortexThe Journal of Neuroscience, 17
(2007)
Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field SpacingScience, 315
J. Engel, T. Pedley, J. Aicardi (2008)
Epilepsy : a comprehensive textbook
R. Jones, U. Heinemann (1988)
Synaptic and intrinsic responses of medical entorhinal cortical cells in normal and magnesium-free medium in vitro.Journal of neurophysiology, 59 5
Nicholas Hargus, Ellen Merrick, Aradhya Nigam, C. Kalmar, Aparna Baheti, E. Bertram, M. Patel (2011)
Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neuronsNeurobiology of Disease, 41
L. Jutila, A. Ylinen, K. Partanen, I. Alafuzoff, E. Mervaala, J. Partanen, M. Vapalahti, P. Vainio, A. Pitkänen (2001)
MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy.AJNR. American journal of neuroradiology, 22 8
Cynthia Dolorfo, D. Amaral (1998)
Entorhinal cortex of the rat: Organization of intrinsic connectionsJournal of Comparative Neurology, 398
Values represent mean ± s.e.m. n/d = not determined, because number of action potentials were 961 insufficient for reliable analysis
S. Deadwyler, J. West, C. Cotman, G. Lynch (1975)
Physiological studies of the reciprocal connections between the hippocampus and entorhinal cortexExperimental Neurology, 49
R. Jones, J. Lambert (1990)
Synchronous discharges in the rat entorhinal cortex in vitro: Site of initiation and the role of excitatory amino acid receptorsNeuroscience, 34
R. Klink, A. Alonso (1997)
Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortexHippocampus, 7
T. Gloveli, Dietmar Schmitz, Uwe Heinemann (1997)
Prolonged inhibitory potentials in layer III projection cells of the rat medial entorhinal cortex induced by synaptic stimulation in vitroNeuroscience, 80
A. Agmon, B. Connors (1989)
Repetitive burst-firing neurons in the deep layers of mouse somatosensory cortexNeuroscience Letters, 99
K. Vehkalahti, B. Everitt (2018)
Cluster AnalysisMultivariate Analysis for the Behavioral Sciences
R. Thorndike (1953)
Who belongs in the family?Psychometrika, 18
J. Chrobak, András Lörincz, G. Buzsáki (2000)
Physiological patterns in the hippocampo‐entorhinal cortex systemHippocampus, 10
Morgane Bon-Jégo, R. Yuste (2007)
Persistently Active, Pacemaker-Like Neurons in NeocortexFrontiers in Neuroscience, 1
F. Bartolomei, Mouhamad Khalil, F. Wendling, A. Sontheimer, J. Régis, J. Ranjeva, M. Guye, P. Chauvel (2005)
Entorhinal Cortex Involvement in Human Mesial Temporal Lobe Epilepsy: An Electrophysiologic and Volumetric StudyEpilepsia, 46
P. Buckmaster, F. Dudek (1997)
Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization.Journal of neurophysiology, 77 5
P. Buckmaster, A. Alonso, D. Canfield, D. Amaral (2004)
Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeysJournal of Comparative Neurology, 470
F. Kloosterman, M. Witter, T. Haeften (2003)
Topographical and laminar organization of subicular projections to the parahippocampal region of the ratJournal of Comparative Neurology, 455
The entorhinal cortex (ERC) is critically implicated in temporal lobe epileptogenesis—the most common type of adult epilepsy. Previous studies have suggested that epileptiform discharges likely initiate in seizure-sensitive deep layers (V–VI) of the medial entorhinal area (MEA) and propagate into seizure-resistant superficial layers (II–III) and hippocampus, establishing a lamina-specific distinction between activities of deep- versus superficial-layer neurons and their seizure susceptibilities. While layer II stellate cells in MEA have been shown to be hyperexcitable and hypersynchronous in patients and animal models of temporal lobe epilepsy (TLE), the fate of neurons in the deep layers under epileptic conditions and their overall contribution to epileptogenicity of this region have remained unclear. We used whole cell recordings from slices of the ERC in normal and pilocarpine-treated epileptic rats to characterize the electrophysiological properties of neurons in this region and directly assess changes in their excitatory and inhibitory synaptic drive under epileptic conditions. We found a surprising heterogeneity with at least three major types and two subtypes of functionally distinct excitatory neurons. However, contrary to expectation, none of the major neuron types characterized showed any significant changes in their excitability, barring loss of excitatory and inhibitory inputs in a subtype of neurons whose dendrite extended into layer III, where neurons are preferentially lost during TLE. We confirmed hyperexcitability of layer II neurons in the same slices, suggesting minimal influence of deep-layer input on superficial-layer neuron excitability under epileptic conditions. These data show that deep layers of ERC contain a more diverse population of excitatory neurons than previously envisaged that appear to belie their seizure-sensitive reputation. entorhinal cortex cell type classification excitatory neurons Copyright © 2012 the American Physiological Society « Previous | Next Article » Table of Contents This Article Published online before print June 27, 2012 , doi: 10.1152/jn.00364.2012 AJP - JN Physiol September 15, 2012 vol. 108 no. 6 1724-1738 » Abstract Free Full Text Free to you Full Text (PDF) Free to you All Versions of this Article: jn.00364.2012v1 108/6/1724 most recent Classifications Article Services Email this article to a friend Alert me when this article is cited Alert me if a correction is posted Similar articles in this journal Similar articles in Web of Science Similar articles in PubMed Download to citation manager Citing Articles Load citing article information Citing articles via Web of Science Google Scholar Articles by Pilli, J. Articles by Kumar, S. S. PubMed PubMed citation Articles by Pilli, J. Articles by Kumar, S. S. Related Content Load related web page information Current Content September 15, 2012 Alert me to new issues of AJP - JN Physiol About the Journal Calls for Papers Information for Authors Submit a Manuscript Ethical Policies AuthorChoice PubMed Central Policy Reprints and Permissions Advertising Press Copyright © 2012 the American Physiological Society Print ISSN: 0022-3077 Online ISSN: 1522-1598 var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-2924550-1"); pageTracker._trackPageview(); } catch(err) {} var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-30"); pageTracker._setDomainName(".physiology.org"); pageTracker._trackPageview(); } catch(err) {}
Journal of Neurophysiology – The American Physiological Society
Published: Sep 15, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.