Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Laser additive manufacturing of metallic components: materials, processes and mechanisms

Laser additive manufacturing of metallic components: materials, processes and mechanisms Unlike conventional materials removal methods, additive manufacturing (AM) is based on a novel materials incremental manufacturing philosophy. Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser. The current development focus of AM is to produce complex shaped functional metallic components, including metals, alloys and metal matrix composites (MMCs), to meet demanding requirements from aerospace, defence, automotive and biomedical industries. Laser sintering (LS), laser melting (LM) and laser metal deposition (LMD) are presently regarded as the three most versatile AM processes. Laser based AM processes generally have a complex non-equilibrium physical and chemical metallurgical nature, which is material and process dependent. The influence of material characteristics and processing conditions on metallurgical mechanisms and resultant microstructural and mechanical properties of AM processed components needs to be clarified. The present review initially defines LS/LM/LMD processes and operative consolidation mechanisms for metallic components. Powder materials used for AM, in the categories of pure metal powder, prealloyed powder and multicomponent metals/alloys/MMCs powder, and associated densification mechanisms during AM are addressed. An in depth review is then presented of material and process aspects of AM, including physical aspects of materials for AM and microstructural and mechanical properties of AM processed components. The overall objective is to establish a relationship between material, process, and metallurgical mechanism for laser based AM of metallic components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Materials Reviews SAGE

Laser additive manufacturing of metallic components: materials, processes and mechanisms

Loading next page...
 
/lp/sage/laser-additive-manufacturing-of-metallic-components-materials-Blb4OoG8F4

References (262)

Publisher
SAGE
Copyright
© 2012 Institute of Materials, Minerals and Mining and ASM International Published by Maney for the Institute and ASM International
ISSN
0950-6608
eISSN
1743-2804
DOI
10.1179/1743280411y.0000000014
Publisher site
See Article on Publisher Site

Abstract

Unlike conventional materials removal methods, additive manufacturing (AM) is based on a novel materials incremental manufacturing philosophy. Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser. The current development focus of AM is to produce complex shaped functional metallic components, including metals, alloys and metal matrix composites (MMCs), to meet demanding requirements from aerospace, defence, automotive and biomedical industries. Laser sintering (LS), laser melting (LM) and laser metal deposition (LMD) are presently regarded as the three most versatile AM processes. Laser based AM processes generally have a complex non-equilibrium physical and chemical metallurgical nature, which is material and process dependent. The influence of material characteristics and processing conditions on metallurgical mechanisms and resultant microstructural and mechanical properties of AM processed components needs to be clarified. The present review initially defines LS/LM/LMD processes and operative consolidation mechanisms for metallic components. Powder materials used for AM, in the categories of pure metal powder, prealloyed powder and multicomponent metals/alloys/MMCs powder, and associated densification mechanisms during AM are addressed. An in depth review is then presented of material and process aspects of AM, including physical aspects of materials for AM and microstructural and mechanical properties of AM processed components. The overall objective is to establish a relationship between material, process, and metallurgical mechanism for laser based AM of metallic components.

Journal

International Materials ReviewsSAGE

Published: May 1, 2012

Keywords: Additive manufacturing; Rapid prototyping; Rapid manufacturing; Direct metal laser sintering; Selective laser melting; Direct metal deposition; Laser engineered net shaping; Metals; Alloys; Metal matrix composites; Microstructure; Mechanical property; Review

There are no references for this article.