Access the full text.
Sign up today, get DeepDyve free for 14 days.
Susan Hayes, A. Chawla, S. Corvera (2002)
TGFβ receptor internalization into EEA1-enriched early endosomesThe Journal of Cell Biology, 158
J. Massagué (2000)
How cells read TGF-beta signals.Nature reviews. Molecular cell biology, 1 3
E. Grönroos, U. Hellman, C. Heldin, J. Ericsson (2002)
Control of Smad7 stability by competition between acetylation and ubiquitination.Molecular cell, 10 3
Zhang Xiao, N. Watson, C. Rodriguez, H. Lodish (2001)
Nucleocytoplasmic Shuttling of Smad1 Conferred by Its Nuclear Localization and Nuclear Export Signals*The Journal of Biological Chemistry, 276
Minoru Fukuchi, Takeshi Imamura, T. Chiba, Takanori Ebisawa, M. Kawabata, Keiji Tanaka, K. Miyazono, K. Miyazono (2001)
Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.Molecular biology of the cell, 12 5
J. Yue, K. Mulder (2000)
Activation of the mitogen-activated protein kinase pathway by transforming growth factor-beta.Methods in molecular biology, 142
Stephen Wicks, Stephen Lui, N. Abdel-Wahab, R. Mason, A. Chantry (2000)
Inactivation of Smad-Transforming Growth Factor β Signaling by Ca2+-Calmodulin-Dependent Protein Kinase IIMolecular and Cellular Biology, 20
M. Caestecker, W. Parks, Chistopher Frank, P. Castagnino, D. Bottaro, A. Roberts, R. Lechleider (1998)
Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases.Genes & development, 12 11
A. Moustakas, S. Souchelnytskyi, C. Heldin (2001)
Smad regulation in TGF-beta signal transduction.Journal of cell science, 114 Pt 24
G. Blobe, Xuedong Liu, Shijing Fang, T. How, H. Lodish (2001)
A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC.The Journal of biological chemistry, 276 43
E. Janda, K. Lehmann, I. Killisch, M. Jechlinger, M. Herzig, J. Downward, H. Beug, S. Grünert (2002)
Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways.The Journal of cell biology, 156 2
S Itoh, F Itoh, MJ Goumans, P ten Dijke (2000)
Signaling of transforming growth factor-β family members through Smad proteinsEur. J. Biochem., 267
Jonathan Brown, Maria Dichiara, K. Anderson, M. Gimbrone, J. Topper (1999)
MEKK-1, a Component of the Stress (Stress-activated Protein Kinase/c-Jun N-terminal Kinase) Pathway, Can Selectively Activate Smad2-mediated Transcriptional Activation in Endothelial Cells*The Journal of Biological Chemistry, 274
Shuting Bai, Xu Cao (2002)
A Nuclear Antagonistic Mechanism of Inhibitory Smads in Transforming Growth Factor-β Signaling*The Journal of Biological Chemistry, 277
Dong Liu, B. Black, R. Derynck (2001)
TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3.Genes & development, 15 22
K. Yamaguchi, S. Nagai, J. Ninomiya-Tsuji, M. Nishita, K. Tamai, K. Irie, N. Ueno, E. Nishida, H. Shibuya, Kunihiro Matsumoto (1999)
XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathwayThe EMBO Journal, 18
PS Lee, C Chang, D Liu, R Derynck (2003)
Sumoylation of Smad4, the common Smad mediator of TGF-β family signalingJ. Biol. Chem., 278
Susan Hayes, A. Chawla, S. Corvera (2002)
TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2.The Journal of cell biology, 158 7
E. Piek, A. Moustakas, A. Kurisaki, C. Heldin, P. Dijke (1999)
TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells.Journal of cell science, 112 ( Pt 24)
F. Ventura, Fang Liu, J. Doody, J. Massagué (1996)
Interaction of Transforming Growth Factor-β Receptor I with Farnesyl-protein Transferase-α in Yeast and Mammalian Cells*The Journal of Biological Chemistry, 271
Mina Watanabe, Norihisa Masuyama, M. Fukuda, E. Nishida (2000)
Regulation of intracellular dynamics of Smad4 by its leucine‐rich nuclear export signalEMBO reports, 1
G. Inman, F. Nicolás, C. Hill (2002)
Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity.Molecular cell, 10 2
Sofia Edlund, M. Landström, C. Heldin, P. Aspenström (2002)
Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA.Molecular biology of the cell, 13 3
N Masuyama, H Hanafusa, M Kusakabe, H Shibuya, E Nishida (1999)
Identification of two Smad4 proteins in Xenopus. Their common and distinct propertiesJ. Biol. Chem., 274
A. Hanyu, Y. Ishidou, Takanori Ebisawa, T. Shimanuki, T. Imamura, K. Miyazono (2001)
The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signalingThe Journal of Cell Biology, 155
A. Moustakas, S. Souchelnytskyi, C. Heldin
Smad regulation in TGF-β signal transduction
Ying Zhang, Chenbei Chang, Daniel Gehling, A. Hemmati‐Brivanlou, R. Derynck (2001)
Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase.Proceedings of the National Academy of Sciences of the United States of America, 98 3
Takanori Ebisawa, Minoru Fukuchi, Gyo Murakami, T. Chiba, Keiji Tanaka, T. Imamura, K. Miyazono (2001)
Smurf1 Interacts with Transforming Growth Factor-β Type I Receptor through Smad7 and Induces Receptor Degradation*The Journal of Biological Chemistry, 276
Yen-Tsun Lai, K. Beason, Gregory Brames, J. Desgrosellier, Michelle Clegett, Marlene Shaw, Christopher Brown, J. Barnett (2000)
Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation.Developmental biology, 222 1
M. Huse, Ye-Guang Chen, J. Massagué, J. Kuriyan (1999)
Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12Cell, 96
Jia-Wei Wu, Min Hu, J. Chai, J. Seoane, M. Huse, Carey Li, Daniel Rigotti, S. Kyin, T. Muir, R. Fairman, J. Massagué, Yigong Shi (2001)
Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.Molecular cell, 8 6
Andrei Bakin, A. Tomlinson, N. Bhowmick, H. Moses, C. Arteaga (2000)
Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration*The Journal of Biological Chemistry, 275
M. Engel, M. McDonnell, B. Law, H. Moses (1999)
Interdependent SMAD and JNK Signaling in Transforming Growth Factor-β-mediated Transcription*The Journal of Biological Chemistry, 274
E. Janda, K. Lehmann, I. Killisch, M. Jechlinger, M. Herzig, J. Downward, H. Beug, S. Grünert (2002)
Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasisThe Journal of Cell Biology, 156
Nicole Liberati, M. Moniwa, A. Borton, J. Davie, Xiao-Fan Wang (2001)
An Essential Role for Mad Homology Domain 1 in the Association of Smad3 with Histone Deacetylase Activity*The Journal of Biological Chemistry, 276
S. Itoh, F. Itoh, M. Goumans, P. Dijke (2000)
Signaling of transforming growth factor‐β family members through Smad proteinsFEBS Journal, 267
Diying Yao, J. Doré, E. Leof (2000)
FKBP12 Is a Negative Regulator of Transforming Growth Factor-β Receptor Internalization*The Journal of Biological Chemistry, 275
C. Sirard, S. Kim, C. Mirtsos, Paul Tadich, P. Hoodless, A. Itié, R. Maxson, J. Wrana, T. Mak (2000)
Targeted Disruption in Murine Cells Reveals Variable Requirement for Smad4 in Transforming Growth Factor β-related Signaling*The Journal of Biological Chemistry, 275
Peter Kavsak, R. Rasmussen, Carrie Causing, S. Bonni, Hai-qing Zhu, G. Thomsen, J. Wrana (2000)
Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.Molecular cell, 6 6
P. Datta, H. Moses (2000)
STRAP and Smad7 Synergize in the Inhibition of Transforming Growth Factor β SignalingMolecular and Cellular Biology, 20
G. Salvesen, C. Duckett (2002)
IAP proteins: blocking the road to death's doorNature Reviews Molecular Cell Biology, 3
D. Durocher, I. Taylor, Dilara Sarbassova, L. Haire, Sarah Westcott, S. Jackson, S. Smerdon, M. Yaffe (2000)
The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms.Molecular cell, 6 5
Chunming Dong, Zhiru Li, R. Alvarez, Xin-Hua Feng, P. Goldschmidt-Clermont (2000)
Microtubule Binding to Smads May Regulate TGFβ ActivityMolecular Cell, 5
Joke Comijn, G. Berx, P. Vermassen, K. Verschueren, L. Grunsven, E. Bruyneel, M. Mareel, Danny Huylebroeck, F. Roy (2001)
The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion.Molecular cell, 7 6
E Piek (1999)
10.1242/jcs.112.24.4557J. Cell Sci., 112
B. Aghdasi, K. Ye, A. Resnick, Alex Huang, H. Ha, Xin Guo, T. Dawson, V. Dawson, S. Snyder (2001)
FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycleProceedings of the National Academy of Sciences of the United States of America, 98
I. Yakymovych, P. Dijke, C. Heldin, S. Souchelnytskyi (2001)
Regulation of Smad signaling by protein kinase CThe FASEB Journal, 15
C. Petritsch, H. Beug, A. Balmain, M. Oft (2000)
TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G1 arrestGenes & Development, 14
I. Griswold-Prenner, C. Kamibayashi, E. Maruoka, M. Mumby, R. Derynck (1998)
Physical and Functional Interactions between Type I Transforming Growth Factor β Receptors and Bα, a WD-40 Repeat Subunit of Phosphatase 2AMolecular and Cellular Biology, 18
Lan Xu, Ye-Guang Chen, J. Massagué (2000)
The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylationNature Cell Biology, 2
F Vinals (2001)
10.1128/MCB.21.21.7218-7230.2001Mol. Cell. Biol., 21
M. Kretzschmar, J. Doody, I. Timokhina, J. Massagué (1999)
A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras.Genes & development, 13 7
M. Funaba, C. Zimmerman, L. Mathews (2002)
Modulation of Smad2-mediated Signaling by Extracellular Signal-regulated Kinase*The Journal of Biological Chemistry, 277
B. Hocevar, A. Smine, Xiang-Xi Xu, P. Howe (2001)
The adaptor molecule Disabled‐2 links the transforming growth factor β receptors to the Smad pathwayThe EMBO Journal, 20
Yi Tang, V. Katuri, A. Dillner, B. Mishra, C. Deng, L. Mishra (2003)
Disruption of Transforming Growth Factor-β Signaling in ELF β-Spectrin-Deficient MiceScience, 299
A Moustakas (2001)
10.1242/jcs.114.24.4359J. Cell Sci., 114
S. Penheiter, Hugh Mitchell, N. Garamszegi, M. Edens, J. Doré, E. Leof (2002)
Internalization-Dependent and -Independent Requirements for Transforming Growth Factor β Receptor Signaling via the Smad PathwayMolecular and Cellular Biology, 22
L. Pulaski, M. Landström, C. Heldin, S. Souchelnytskyi (2001)
Phosphorylation of Smad7 at Ser-249 Does Not Interfere with Its Inhibitory Role in Transforming Growth Factor-β-dependent Signaling but Affects Smad7-dependent Transcriptional Activation*The Journal of Biological Chemistry, 276
R. Lo, J. Massagué (1999)
Ubiquitin-dependent degradation of TGF-β-activated Smad2Nature Cell Biology, 1
L. Choy, R. Derynck (1998)
The Type II Transforming Growth Factor (TGF)-β Receptor-interacting Protein TRIP-1 Acts as a Modulator of the TGF-β Response*The Journal of Biological Chemistry, 273
Lilach Gilboa, A. Nohe, Tanja Geissendörfer, W. Sebald, Y. Henis, P. Knaus (2000)
Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors.Molecular biology of the cell, 11 3
J. Zavadil, M. Bitzer, D. Liang, Yuh Yang, A. Massimi, S. Kneitz, E. Piek, E. Bottinger (2001)
Genetic programs of epithelial cell plasticity directed by transforming growth factor-βProceedings of the National Academy of Sciences of the United States of America, 98
B. Razani, Xiao Zhang, M. Bitzer, G. Gersdorff, E. Böttinger, M. Lisanti (2001)
Caveolin-1 Regulates Transforming Growth Factor (TGF)-β/SMAD Signaling through an Interaction with the TGF-β Type I Receptor*The Journal of Biological Chemistry, 276
Li Yu, M. Hébert, Ying Zhang (2002)
TGF‐β receptor‐activated p38 MAP kinase mediates Smad‐independent TGF‐β responsesThe EMBO Journal, 21
M. Engel, P. Datta, H. Moses (1998)
RhoB Is Stabilized by Transforming Growth Factor β and Antagonizes Transcriptional Activation*The Journal of Biological Chemistry, 273
L. Choy, R. Derynck (2003)
Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function.The Journal of biological chemistry, 278 11
Anne Bishop, A. Hall (2000)
Rho GTPases and their effector proteins.The Biochemical journal, 348 Pt 2
(2001)
Transforming Growth Factor β1 (TGF-β1) Promotes Endothelial Cell Survival during In Vitro Angiogenesis via an Autocrine Mechanism Implicating TGF-α Signaling
S McGonigle, MJ Beall, EJ Pearce (2002)
Eukaryotic initiation factor 2 α subunit associates with TGF-β receptors and 14-3-3ε and acts as a modulator of the TGF-β responseBiochemistry, 41
R. Bai, C. Koester, Ouyang Tao, S. Hahn, M. Hammerschmidt, C. Peschel, J. Duyster (2002)
SMIF, a Smad4-interacting protein that functions as a co-activator in TGFβ signallingNature Cell Biology, 4
XH Feng, YY Liang, M Liang, W Zhai, X Lin (2002)
Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15Ink4BMol. Cell, 9
Pierre Lee, Chenbei Chang, Dong Liu, R. Derynck (2003)
Sumoylation of Smad4, the Common Smad Mediator of Transforming Growth Factor-β Family Signaling*Journal of Biological Chemistry, 278
P. Miettinen, Reinhard Ebner, A. Lopez, Rik Derynck (1994)
TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptorsThe Journal of Cell Biology, 127
B. Chacko, B. Qin, J. Correia, S. Lam, M. Caestecker, Kai Lin (2001)
The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerizationNature Structural Biology, 8
S. Bonni, Hong-Rui Wang, Carrie Causing, Peter Kavsak, S. Stroschein, K. Luo, J. Wrana (2001)
TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradationNature Cell Biology, 3
N. Bhowmick, M. Ghiassi, Andrei Bakin, M. Aakre, C. Lundquist, M. Engel, C. Arteaga, H. Moses (2001)
Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism.Molecular biology of the cell, 12 1
XH Feng (2002)
10.1016/S1097-2765(01)00430-0Mol. Cell, 9
Haitao Zhu, Peter Kavsak, S. Abdollah, J. Wrana, G. Thomsen (1999)
A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formationNature, 400
G. Guglielmo, C. Roy, Anne Goodfellow, J. Wrana (2003)
Distinct endocytic pathways regulate TGF-β receptor signalling and turnoverNature Cell Biology, 5
M. Pessah, J. Marais, C. Prunier, N. Ferrand, F. Lallemand, A. Mauviel, A. Atfi (2002)
c-Jun Associates with the Oncoprotein Ski and Suppresses Smad2 Transcriptional Activity*The Journal of Biological Chemistry, 277
F. Itoh, H. Asao, K. Sugamura, C. Heldin, P. Dijke, S. Itoh (2001)
Promoting bone morphogenetic protein signaling through negative regulation of inhibitory SmadsThe EMBO Journal, 20
N. Yamakawa, K. Tsuchida, H. Sugino (2002)
The rasGAP‐binding protein, Dok‐1, mediates activin signaling via serine/threonine kinase receptorsThe EMBO Journal, 21
M. Goumans, Gudrun Valdimarsdottir, S. Itoh, A. Rosendahl, P. Sideras, P. Dijke (2002)
Balancing the activation state of the endothelium via two distinct TGF‐β type I receptorsThe EMBO Journal, 21
M. Wan, Xu Cao, Yalei Wu, Shuting Bai, Liyu Wu, Xingming Shi, Ning Wang, Xu Cao (2002)
Jab1 antagonizes TGF‐β signaling by inducing Smad4 degradationEMBO reports, 3
Xin-Hua Feng, Xia Lin, R. Derynck (2000)
Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF‐βThe EMBO Journal, 19
Yibin Kang, C. Chen, J. Massagué (2003)
A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells.Molecular cell, 11 4
V. Foletta, M. Lim, Juliana Soosairajah, April Kelly, E. Stanley, M. Shannon, Wei He, Subahayan Das, J. Massagué, O. Bernard (2003)
Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1The Journal of Cell Biology, 162
L. Choy, J. Skillington, R. Derynck (2000)
Roles of Autocrine TGF-β Receptor and Smad Signaling in Adipocyte DifferentiationThe Journal of Cell Biology, 149
Aya Sasaki, Y. Masuda, Y. Ohta, K. Ikeda, Ken Watanabe (2001)
Filamin Associates with Smads and Regulates Transforming Growth Factor-β Signaling*The Journal of Biological Chemistry, 276
C. Chen, Yibin Kang, P. Siegel, J. Massagué (2002)
E2F4/5 and p107 as Smad Cofactors Linking the TGFβ Receptor to c-myc RepressionCell, 110
Norihisa Masuyama, Hiroshi Hanafusa, Morioh Kusakabe, H. Shibuya, E. Nishida (1999)
Identification of Two Smad4 Proteins in XenopusThe Journal of Biological Chemistry, 274
A. Mazars, F. Lallemand, C. Prunier, J. Marais, N. Ferrand, M. Pessah, G. Cherqui, A. Atfi (2001)
Evidence for a Role of the JNK Cascade in Smad7-mediated Apoptosis*The Journal of Biological Chemistry, 276
J. Seoane, C. Pouponnot, P. Staller, M. Schader, M. Eilers, J. Massagué (2001)
TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4bNature Cell Biology, 3
R. Derynck, Xin-Hua Feng (1997)
TGF- receptor signalingBiochimica et Biophysica Acta
N. Kimura, R. Matsuo, H. Shibuya, K. Nakashima, T. Taga (2000)
BMP2-induced Apoptosis Is Mediated by Activation of the TAK1-p38 Kinase Pathway That Is Negatively Regulated by Smad6*The Journal of Biological Chemistry, 275
S. McGonigle, M. Beall, E. Pearce (2002)
Eukaryotic initiation factor 2 alpha subunit associates with TGF beta receptors and 14-3-3 epsilon and acts as a modulator of the TGF beta response.Biochemistry, 41 2
Yu-Ting Yan, Jan‐Jan Liu, Yi Luo, Chaosu E, R. Haltiwanger, C. Abate-Shen, M. Shen (2002)
Dual Roles of Cripto as a Ligand and Coreceptor in the Nodal Signaling PathwayMolecular and Cellular Biology, 22
Xing Shen, Jianming Li, P. Hu, D. Waddell, Ji Zhang, Xiao-Fan Wang (2001)
The Activity of Guanine Exchange Factor NET1 Is Essential for Transforming Growth Factor-β-mediated Stress Fiber Formation*The Journal of Biological Chemistry, 276
G. Inman, C. Hill (2002)
Stoichiometry of Active Smad-Transcription Factor Complexes on DNA*The Journal of Biological Chemistry, 277
Andrei Bakin, C. Rinehart, A. Tomlinson, C. Arteaga (2002)
p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration.Journal of cell science, 115 Pt 15
K. Arora, R. Warrior (2001)
A new Smurf in the village.Developmental cell, 1 4
Oliver Grimm, J. Gurdon (2002)
Nuclear exclusion of Smad2 is a mechanism leading to loss of competenceNature Cell Biology, 4
M. Huse, T. Muir, Lan Xu, Ye-Guang Chen, J. Kuriyan, J. Kuriyan, J. Massagué, J. Massagué (2001)
The TGF beta receptor activation process: an inhibitor- to substrate-binding switch.Molecular cell, 8 3
S. Stroschein, S. Bonni, Jeffrey Wrana, K. Luo (2001)
Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN.Genes & development, 15 21
A. Kurisaki, S. Kose, Y. Yoneda, C. Heldin, A. Moustakas (2001)
Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner.Molecular biology of the cell, 12 4
J. Massagué (2000)
How cells read TGF-β signalsNature Reviews Molecular Cell Biology, 1
Lan Xu, Yibin Kang, Seda Cöl, J. Massagué (2002)
Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus.Molecular cell, 10 2
Yong Wan, Xuedong Liu, Marc Kirschner (2001)
The anaphase-promoting complex mediates TGF-beta signaling by targeting SnoN for destruction.Molecular cell, 8 5
Nadia Barbara, J. Wrana, M. Letarte (1999)
Endoglin Is an Accessory Protein That Interacts with the Signaling Receptor Complex of Multiple Members of the Transforming Growth Factor-β Superfamily*The Journal of Biological Chemistry, 274
D. Bennett, L. Alphey (2002)
PP1 binds Sara and negatively regulates Dpp signaling in Drosophila melanogasterNature Genetics, 31
T. Alliston, L. Choy, P. Ducy, G. Karsenty, R. Derynck (2001)
TGF‐β‐induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiationThe EMBO Journal, 20
AV Bakin (2002)
10.1242/jcs.115.15.3193J. Cell Sci., 115
J. Xu, L. Attisano (2000)
Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway.Proceedings of the National Academy of Sciences of the United States of America, 97 9
Y. Kato, R. Habas, Y. Katsuyama, A. Näär, Xi He (2002)
A component of the ARC/Mediator complex required for TGFβ/Nodal signallingNature, 418
Transforming growth factor-β (TGF-β) proteins regulate cell function, and have key roles in development and carcinogenesis. The intracellular effectors of TGF-β signalling, the Smad proteins, are activated by receptors and translocate into the nucleus, where they regulate transcription. Although this pathway is inherently simple, combinatorial interactions in the heteromeric receptor and Smad complexes, receptor-interacting and Smad-interacting proteins, and cooperation with sequence-specific transcription factors allow substantial versatility and diversification of TGF-β family responses. Other signalling pathways further regulate Smad activation and function. In addition, TGF-β receptors activate Smad-independent pathways that not only regulate Smad signalling, but also allow Smad-independent TGF-β responses.
Nature – Springer Journals
Published: Oct 9, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.