Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast.

Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Abstract We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37 degrees. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37 degrees. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth. This content is only available as a PDF. © Genetics 1993 This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genetics Oxford University Press

Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast.

Genetics , Volume 135 (3) – Nov 1, 1993

Loading next page...
 
/lp/oxford-university-press/isolation-and-characterization-of-chromosome-gain-and-increase-in-BtoJDFYUkX

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Oxford University Press
Copyright
Copyright © 2021 Genetics Society of America
ISSN
0016-6731
eISSN
1943-2631
DOI
10.1093/genetics/135.3.677
Publisher site
See Article on Publisher Site

Abstract

Abstract We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37 degrees. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37 degrees. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth. This content is only available as a PDF. © Genetics 1993 This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

GeneticsOxford University Press

Published: Nov 1, 1993

There are no references for this article.