Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yosra Badiei, M. Siegler, D. Goldberg (2011)
O2 activation by bis(imino)pyridine iron(II)-thiolate complexes.Journal of the American Chemical Society, 133 5
Crisjoe Joseph, M. Maroney (2007)
Cysteine dioxygenase: structure and mechanism.Chemical communications, 32
L. Heinrich, Aude Mary-Verla, Yun Li, J. Vaissermann, J. Chottard (2001)
Cobalt(III) Complexes with Carboxamido‐N and Sulfenato‐S or Sulfinato‐S Ligands Suggest that a Coordinated Sulfenate‐S is Essential for the Catalytic Activity of Nitrile HydratasesEuropean Journal of Inorganic Chemistry, 2001
E. Galardon, M. Giorgi, I. Artaud (2004)
Oxygenation of thiolates to S-bonded sulfinate in an iron III complex related to nitrile hydratase.Chemical communications, 3
J. Crawford, Wei Li, B. Pierce (2011)
Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate.Biochemistry, 50 47
Wei Ge, I. Clifton, Jeanette Stok, R. Adlington, J. Baldwin, P. Rutledge (2008)
Isopenicillin N synthase mediates thiolate oxidation to sulfenate in a depsipeptide substrate analogue: implications for oxygen binding and a link to nitrile hydratase?Journal of the American Chemical Society, 130 31
Nadine Bruland, J. Wübbeler, A. Steinbüchel (2009)
3-Mercaptopropionate Dioxygenase, a Cysteine Dioxygenase Homologue, Catalyzes the Initial Step of 3-Mercaptopropionate Catabolism in the 3,3-Thiodipropionic Acid-degrading Bacterium Variovorax paradoxus*Journal of Biological Chemistry, 284
J. Baldwin, R. Adlington, S. Moroney, L. Field, H. Ting (1984)
Stepwise ring closure in penicillin biosynthesis. Intitial β-lactam formationJournal of The Chemical Society, Chemical Communications
J. Schöffel, A. Rogachev, S. George, P. Burger (2009)
Isolation and hydrogenation of a complex with a terminal iridium-nitrido bond.Angewandte Chemie, 48 26
Yong‐Min Lee, Seungwoo Hong, Y. Morimoto, W. Shin, S. Fukuzumi, W. Nam (2010)
Dioxygen activation by a non-heme iron(II) complex: formation of an iron(IV)-oxo complex via C-H activation by a putative iron(III)-superoxo species.Journal of the American Chemical Society, 132 31
A. Decker, E. Solomon (2005)
Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities.Current opinion in chemical biology, 9 2
Synthetic scheme for the generation of monosulfinate [(NO)Fe(S,SO 2 -C 6 H 4 )(S,S-C 6 H 4 ) 2 ] − and bis(sulfinate) dimer
V. Gibson, C. Redshaw, G. Solan (2007)
Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts.Chemical reviews, 107 5
2−/− by O 2 ; a) production of [Fe III (PyP{SO 2 } 2 )] − with proposed sulfenate intermediate starting from [Fe III (PyPS)] − ; b) outersphere oxidation by O 2 of
J. Baldwin, E. Abraham (1990)
The biosynthesis of penicillins and cephalosporins.Natural product reports, 5 2
B. Pierce, J. Gardner, L. Bailey, T. Brunold, B. Fox (2007)
Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.Biochemistry, 46 29
A. Feig, S. Lippard (1994)
Reactions of Non-Heme Iron(II) Centers with Dioxygen in Biology and ChemistryChemical Reviews, 94
Alison McQuilken, Yunbo Jiang, M. Siegler, D. Goldberg (2012)
Addition of dioxygen to an N4S(thiolate) iron(II) cysteine dioxygenase model gives a structurally characterized sulfinato-iron(II) complex.Journal of the American Chemical Society, 134 21
M. Sallmann, Inke Siewert, Lea Fohlmeister, C. Limberg, Christina Knispel (2012)
A trispyrazolylborato iron cysteinato complex as a functional model for the cysteine dioxygenase.Angewandte Chemie, 51 9
Michael Rose, Nolan Betterley, P. Mascharak (2009)
Thiolate S-oxygenation controls nitric oxide (NO) photolability of a synthetic iron nitrile hydratase (Fe-NHase) model derived from mixed carboxamide/thiolate ligand.Journal of the American Chemical Society, 131 24
Yunbo Jiang, L. Widger, Gary Kasper, M. Siegler, D. Goldberg (2010)
Iron(II)-thiolate S-oxygenation by O2: synthetic models of cysteine dioxygenase.Journal of the American Chemical Society, 132 35
M. Stipanuk, I. Ueki, Jr Dominy, Chad Simmons, L. Hirschberger (2009)
Cysteine dioxygenase: a robust system for regulation of cellular cysteine levelsAmino Acids, 37
M. O’Toole, Majda Kreso, P. Kozlowski, M. Mashuta, C. Grapperhaus (2008)
Spin-state-dependent oxygen sensitivity of iron dithiolates: sulfur oxygenation or disulfide formationJBIC Journal of Biological Inorganic Chemistry, 13
2− derived from the oxygenation of
J. McCoy, L. Bailey, E. Bitto, C. Bingman, D. Aceti, B. Fox, G. Phillips (2006)
Structure and mechanism of mouse cysteine dioxygenase.Proceedings of the National Academy of Sciences of the United States of America, 103 9
D. Sellmann, S. Shaban, F. Heinemann (2004)
Syntheses, Structures and Reactivity of Electron‐Rich Fe and Ru Complexes with the New Pentadentate Ligand Et2NpyS4−H2 {4‐(Diethylamino)2,6‐bis[(2‐mercaptophenyl)thiomethyl]pyridine}European Journal of Inorganic Chemistry, 2004
Sarah Russell, Jonathan Darmon, E. Lobkovsky, P. Chirik (2010)
Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes.Inorganic chemistry, 49 6
Marcel Lubben, A. Meetsma, E. Wilkinson, B. Feringa, L. Que (1995)
NONHEME IRON CENTERS IN OXYGEN ACTIVATION : CHARACTERIZATION OF AN IRON(III) HYDROPEROXIDE INTERMEDIATEAngewandte Chemie, 34
S. Aluri, S. Visser (2007)
The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes.Journal of the American Chemical Society, 129 48
Chien‐Ming Lee, C. Hsieh, A. Dutta, Gene-Hsiang Lee, W. Liaw (2003)
Oxygen binding to sulfur in nitrosylated iron--thiolate complexes: relevance to the Fe-containing nitrile hydratases.Journal of the American Chemical Society, 125 38
Eleni Siakkou, M. Rutledge, S. Wilbanks, Guy Jameson (2011)
Correlating crosslink formation with enzymatic activity in cysteine dioxygenase.Biochimica et biophysica acta, 1814 12
Chien‐Ming Lee, Chien‐Hong Chen, Hao-Wen Chen, Jo-Lu Hsu, Gene-Hsiang Lee, W. Liaw (2005)
Nitrosylated iron-thiolate-sulfinate complexes with {Fe(NO)}6/7 electronic cores: relevance to the transformation between the active and inactive NO-bound forms of iron-containing nitrile hydratases.Inorganic chemistry, 44 19
R. Ho, L. Que, G. Roelfes, B. Feringa, R. Hermant, R. Hage (1999)
Resonance Raman evidence for the interconversion between an [FeIII–η1-OOH] 2+ and [FeIII–η2-O2]+ species and mechanistic implications thereofChemical Communications
E. Hegg, L. Que (1997)
The 2-His-1-carboxylate facial triad--an emerging structural motif in mononuclear non-heme iron(II) enzymes.European journal of biochemistry, 250 3
J. Shearer, J. Nehring, S. Lovell, W. Kaminsky, J. Kovacs (2001)
Modeling the reactivity of superoxide reducing metalloenzymes with a nitrogen and sulfur coordinated iron complex.Inorganic chemistry, 40 22
C. Grapperhaus, M. O’Toole, M. Mashuta (2006)
Synthesis and structure of the tetradeca-iron(III) oxide–alkoxide cluster [Bu4N]2[Fe14O8(OCH2CH3)20Cl8]Inorganic Chemistry Communications, 9
L. Tyler, J. Noveron, A. Olmstead, P. Mascharak (1999)
Oxidation of Metal-Bound Thiolato Sulfur Centers in Fe(III) and Co(III) Complexes with Carboxamido Nitrogens and Thiolato Sulfurs as Donors: Relevance to the Active Sites of Nitrile HydratasesInorganic Chemistry, 38
Heinrich, Li, Vaissermann, Chottard (1999)
A Pentacoordinated Di-N-carboxamido-dithiolato-O-sulfinato-iron(III) Complex Related to the Metal Site of Nitrile Hydratase.Angewandte Chemie, 38 23
J. Baldwin, M. Bradley (1990)
Isopenicillin N synthase: mechanistic studiesChemical Reviews, 90
Priscilla Lugo-Mas, W. Taylor, D. Schweitzer, Roslyn Theisen, Liang Xu, J. Shearer, R. Swartz, Morgan Gleaves, A. DiPasquale, W. Kaminsky, J. Kovacs (2008)
Properties of square-pyramidal alkyl-thiolate Fe(III) complexes, including an analogue of the unmodified form of nitrile hydratase.Inorganic chemistry, 47 23
J. Dominy, Jesse Hwang, Stephanie Guo, L. Hirschberger, S. Zhang, M. Stipanuk (2008)
Synthesis of Amino Acid Cofactor in Cysteine Dioxygenase Is Regulated by Substrate and Represents a Novel Post-translational Regulation of Activity*Journal of Biological Chemistry, 283
S. Kim, C. Sastri, M. Seo, Jinheung Kim, W. Nam (2005)
Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(II) complex.Journal of the American Chemical Society, 127 12
S. Ye, Xiao'ai Wu, Lei Wei, D. Tang, P. Sun, M. Bartlam, Z. Rao (2007)
An Insight into the Mechanism of Human Cysteine DioxygenaseJournal of Biological Chemistry, 282
Hao-Wen Chen, Chin-Wei Lin, Chiao-Chun Chen, Li-Bo Yang, M. Chiang, W. Liaw (2005)
Homodinuclear iron thiolate nitrosyl compounds [(ON)Fe(S,S-C6H4)2 Fe(NO)2]- and [(ON)Fe(SO2,S-C6H4)(S,S-C6H4)Fe(NO)2]- with {Fe(NO)}7-{Fe(NO)2}9 electronic coupling: new members of a class of dinitrosyl iron complexes.Inorganic chemistry, 44 9
S. Nagashima, M. Nakasako, N. Dohmae, M. Tsujimura, K. Takio, M. Odaka, M. Yohda, N. Kamiya, I. Endo (1998)
Novel non-heme iron center of nitrile hydratase with a claw setting of oxygen atomsNature Structural Biology, 5
J. Shearer, Paige Callan, J. Amie (2010)
Use of metallopeptide based mimics demonstrates that the metalloprotein nitrile hydratase requires two oxidized cysteinates for catalytic activity.Inorganic chemistry, 49 19
W. Nam (2007)
Dioxygen Activation by Metalloenzymes and ModelsAccounts of Chemical Research, 40
P. Roach, I. Clifton, V. Fülöp, K. Harlos, G. Barton, J. Hajdu, I. Andersson, C. Schofield, J. Baldwin (1995)
Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymesNature, 375
P. Roach, I. Clifton, C. Hensgens, N. Shibata, C. Schofield, J. Hajdu, J. Baldwin (1997)
Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formationNature, 387
Schenk (2000)
Isopenicillin N Synthase: An Enzyme at Work.Angewandte Chemie, 39 19
Tony Manuel, J. Rohde (2009)
Reaction of a redox-active ligand complex of nickel with dioxygen probes ligand-radical character.Journal of the American Chemical Society, 131 43
Eric Klinker, J. Kaizer, W. Brennessel, Nathaniel Woodrum, C. Cramer, L. Que (2005)
Structures of nonheme oxoiron(IV) complexes from X-ray crystallography, NMR spectroscopy, and DFT calculations.Angewandte Chemie, 44 24
A. McDonald, M. Bukowski, E. Farquhar, Timothy Jackson, Kevin Koehntop, M. Seo, Raymond Hont, A. Stubna, J. Halfen, E. Münck, W. Nam, L. Que (2010)
Sulfur versus iron oxidation in an iron-thiolate model complex.Journal of the American Chemical Society, 132 48
Priscilla Lugo-Mas, A. Dey, Liang Xu, Steven Davin, J. Benedict, W. Kaminsky, K. Hodgson, B. Hedman, E. Solomon, J. Kovacs (2006)
How does single oxygen atom addition affect the properties of an Fe-nitrile hydratase analogue? The compensatory role of the unmodified thiolate.Journal of the American Chemical Society, 128 34
M. Abu‐Omar, Aristobulo Loaiza, N. Hontzeas (2005)
Reaction mechanisms of mononuclear non-heme iron oxygenases.Chemical reviews, 105 6
C. Grapperhaus, Ming Li, A. Patra, Selma Poturovic, P. Kozlowski, M. Zgierski, M. Mashuta (2003)
Synthesis and characterization of N2S3X-Fe models of iron-containing nitrile hydratase.Inorganic chemistry, 42 14
J. Scott, S. Gambarotta, I. Korobkov, P. Budzelaar (2005)
Metal versus ligand alkylation in the reactivity of the (bis-iminopyridinato)Fe catalyst.Journal of the American Chemical Society, 127 37
S. Visser, G. Straganz (2009)
Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?The journal of physical chemistry. A, 113 9
J. Noveron, M. Olmstead, P. Mascharak (2001)
A synthetic analogue of the active site of Fe-containing nitrile hydratase with carboxamido N and thiolato S as donors: synthesis, structure, and reactivities.Journal of the American Chemical Society, 123 14
Michihiko Kobayashi, Toru Nagasawa, Hideaki Yamada (1992)
Enzymatic synthesis of acrylamide: a success story not yet over.Trends in biotechnology, 10 11
J. Enemark, R. Feltham (1974)
Principles of structure, bonding, and reactivity for metal nitrosyl complexesCoordination Chemistry Reviews, 13
E. Solomon, T. Brunold, Mindy Davis, J. Kemsley, Sang-Kyu Lee, N. Lehnert, F. Neese, A. Skulan, Yi-Shan Yang, Jing Zhou (2000)
Geometric and electronic structure/function correlations in non-heme iron enzymes.Chemical reviews, 100 1
M. Tsujimura, M. Odaka, H. Nakayama, N. Dohmae, H. Koshino, T. Asami, M. Hoshino, K. Takio, S. Yoshida, M. Maeda, I. Endo (2003)
A novel inhibitor for Fe-type nitrile hydratase: 2-cyano-2-propyl hydroperoxide.Journal of the American Chemical Society, 125 38
Michihiko Kobayashi, S. Shimizu (1998)
Metalloenzyme nitrile hydratase: Structure, regulation, and application to biotechnologyNature Biotechnology, 16
C. Simmons, K. Krishnamoorthy, Spencer Granett, D. Schuller, J. Dominy, T. Begley, M. Stipanuk, P. Karplus (2008)
A putative Fe2+-bound persulfenate intermediate in cysteine dioxygenase.Biochemistry, 47 44
G. Musie, Chia-Huei Lai, J. Reibenspies, L. Sumner, M. Darensbourg (1998)
Pentacoordinate (&mgr;-Oxo)diiron(III) Thiolate Complexes and Dimeric Iron(II) Precursors.Inorganic chemistry, 37 16
E. Tchesnokov, S. Wilbanks, Guy Jameson (2012)
A strongly bound high-spin iron(II) coordinates cysteine and homocysteine in cysteine dioxygenase.Biochemistry, 51 1
B. Chohan, M. Maroney (2006)
Selective oxidations of a dithiolate complex produce a mixed sulfonate/thiolate complex.Inorganic chemistry, 45 5
A. Campanali, Timothy Kwiecien, L. Hryhorczuk, Jeremy Kodanko (2010)
Oxidation of glutathione by [Fe(IV)(O)(N4Py)](2+): characterization of an [Fe(III)(SG)(N4Py)](2+) intermediate.Inorganic chemistry, 49 11
C. Grapperhaus, M. Darensbourg (1998)
Oxygen Capture by Sulfur in Nickel ThiolatesChemInform, 29
A. Long, I. Clifton, P. Roach, J. Baldwin, C. Schofield, P. Rutledge (2003)
Structural studies on the reaction of isopenicillin N synthase with the substrate analogue delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alpha-aminobutyrate.The Biochemical journal, 372 Pt 3
M. Bukowski, Kevin Koehntop, A. Stubna, E. Bominaar, J. Halfen, E. Münck, W. Nam, L. Que (2005)
A Thiolate-Ligated Nonheme Oxoiron(IV) Complex Relevant to Cytochrome P450Science, 310
L. Ewetz, B. Sörbo (1966)
Characteristics of the cysteinesulfinate-forming enzyme system in rat liver.Biochimica et biophysica acta, 128 2
Devesh Kumar, G. Sastry, D. Goldberg, S. Visser (2012)
Mechanism of S-oxygenation by a cysteine dioxygenase model complex.The journal of physical chemistry. A, 116 1
J. Kovacs (2003)
How Iron Activates O2Science, 299
N. Burzlaff, P. Rutledge, I. Clifton, C. Hensgens, M. Pickford, R. Adlington, P. Roach, J. Baldwin (1999)
The reaction cycle of isopenicillin N synthase observed by X-ray diffractionNature, 401
T. Murakami, M. Nojiri, H. Nakayama, N. Dohmae, K. Takio, M. Odaka, I. Endo, T. Nagamune, M. Yohda (2000)
Post‐translational modification is essential for catalytic activity of nitrile hydrataseProtein Science, 9
I. Endo, Masaki Nojiri, M. Tsujimura, Masayoshi Nakasako, Shigehiro Nagashima, M. Yohda, M. Odaka (2001)
Fe-type nitrile hydratase.Journal of inorganic biochemistry, 83 4
Aurore Thibon, Jason England, M. Martinho, V. Young, Jonathan Frisch, R. Guillot, J. Girerd, E. Münck, L. Que, F. Banse (2008)
Proton- and reductant-assisted dioxygen activation by a nonheme iron(II) complex to form an oxoiron(IV) intermediate.Angewandte Chemie, 47 37
Roslyn Theisen, J. Shearer, W. Kaminsky, J. Kovacs (2004)
Steric and electronic control over the reactivity of a thiolate-ligated Fe(II) complex with dioxygen and superoxide: reversible mu-oxo dimer formation.Inorganic chemistry, 43 24
Amanda Stewart, I. Clifton, R. Adlington, J. Baldwin, P. Rutledge (2007)
A Cyclobutanone Analogue Mimics Penicillin in Binding to Isopenicillin N SynthaseChemBioChem, 8
C. Simmons, Qun Liu, Qingqiu Huang, Q. Hao, T. Begley, P. Karplus, M. Stipanuk (2006)
Crystal Structure of Mammalian Cysteine DioxygenaseJournal of Biological Chemistry, 281
M. Stipanuk, C. Simmons, C. Simmons, P. Karplus, J. Dominy, J. Dominy (2011)
Thiol dioxygenases: unique families of cupin proteinsAmino Acids, 41
A. Howard-Jones, J. Elkins, I. Clifton, P. Roach, R. Adlington, J. Baldwin, P. Rutledge (2007)
Interactions of isopenicillin N synthase with cyclopropyl-containing substrate analogues reveal new mechanistic insight.Biochemistry, 46 16
Devesh Kumar, W. Thiel, S. Visser (2011)
Theoretical study on the mechanism of the oxygen activation process in cysteine dioxygenase enzymes.Journal of the American Chemical Society, 133 11
S. Chatel, A. Chauvin, J. Tuchagues, P. Leduc, E. Bill, J. Chottard, D. Mansuy, I. Artaud (2002)
Structural and spectroscopic characterization of a five-coordinate {Fe(NO)}6 complex derived from an iron complex with carboxamido N and thiolato S donorsInorganica Chimica Acta, 336
M. Costas, M. Mehn, M. Jensen, L. Que (2004)
Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates.Chemical reviews, 104 2
C. MacBeth, A. Golombek, V. Young, Cheng Yang, K. Kuczera, M. Hendrich, A. Borovik (2000)
O2 activation by nonheme iron complexes: A monomeric Fe(III)-Oxo complex derived from O2.Science, 289 5481
The S-oxygenation of cysteine with dioxygen to give cysteine sulfinic acid occurs at the non-heme iron active site of cysteine dioxygenase. Similar S-oxygenation events occur in other non-heme iron enzymes, including nitrile hydratase and isopenicillin N synthase, and these enzymes have inspired the development of a class of [NxSy]–Fe model complexes. Certain members of this class have provided some intriguing examples of S-oxygenation, and this article summarizes these results, focusing on the non-heme iron(ii/iii)–thiolate model complexes that are known to react with O2 or other O-atom transfer oxidants to yield sulfur oxygenates. Key aspects of the synthesis, structure, and reactivity of these systems are presented, along with any mechanistic information available on the oxygenation reactions. A number of iron(iii)–thiolate complexes react with O2 to give S-oxygenates, and the degree to which the thiolate sulfur donors are oxidized varies among the different complexes, depending upon the nature of the ligand, metal geometry, and spin state. The first examples of iron(ii)–thiolate complexes that react with O2 to give selective S-oxygenation are just emerging. Mechanistic information on these transformations is limited, with isotope labeling studies providing much of the current mechanistic data. The many questions that remain unanswered for both models and enzymes provide strong motivation for future work in this area.
Dalton Transactions – Royal Society of Chemistry
Published: Aug 28, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.