Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Schönherr, Karsten Löber, S. Heinemann (2000)
Inhibition of human ether à go‐go potassium channels by Ca2+/calmodulinThe EMBO Journal, 19
Aaron McGee, Deborah Nunziato, J. Maltez, K. Prehoda, G. Pitt, D. Bredt (2004)
Calcium Channel Function Regulated by the SH3-GK Module in β SubunitsNeuron, 42
Hua Wen, I. Levitan (2002)
Calmodulin Is an Auxiliary Subunit of KCNQ2/3 Potassium ChannelsThe Journal of Neuroscience, 22
N. Tohse, M. Kameyama, H. Irisawa (1987)
Intracellular Ca2+ and protein kinase C modulate K+ current in guinea pig heart cells.The American journal of physiology, 253 5 Pt 2
A. Moss, R. Kass (2005)
Long QT syndrome: from channels to cardiac arrhythmias.The Journal of clinical investigation, 115 8
William Joiner, Rajesh Khanna, L. Schlichter, Leonard Kaczmarek (2001)
Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels.The Journal of biological chemistry, 276 41
L. Larsen, I. Fosdal, P. Andersen, Jørgen Kanters, J. Vuust, G. Wettrell, M. Christiansen (1999)
Recessive Romano-Ward syndrome associated with compound heterozygosity for two mutations in the KVLQT1 geneEuropean Journal of Human Genetics, 7
E. Yus-nájera, Irene Santana-Castro, A. Villarroel (2002)
The Identification and Characterization of a Noncontinuous Calmodulin-binding Site in Noninactivating Voltage-dependent KCNQ Potassium Channels*The Journal of Biological Chemistry, 277
H. Cruzblanca, D. Koh, B. Hille (1998)
Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons.Proceedings of the National Academy of Sciences of the United States of America, 95 12
P. Mohler, J. Schott, A. Gramolini, K. Dilly, S. Guatimosim, W. DuBell, Long-Sheng Song, K. Haurogné, F. Kyndt, Mervat Ali, T. Rogers, W. Lederer, D. Escande, H. Marec, V. Bennett, V. Bennett (2003)
Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac deathNature, 421
C. Chouabe, N. Neyroud, P. Richard, I. Denjoy, B. Hainque, G. Romey, M. Drici, P. Guicheney, J. Barhanin (2000)
Novel mutations in KvLQT1 that affect Iks activation through interactions with Isk.Cardiovascular research, 45 4
M. Varnum, W. Zagotta (1997)
Interdomain interactions underlying activation of cyclic nucleotide-gated channels.Science, 278 5335
Y. Saimi, C. Kung (2002)
Calmodulin as an ion channel subunit.Annual review of physiology, 64
I. Splawski, Jiaxiang Shen, K. Timothy, M. Lehmann, S. Priori, Jennifer Robinson, A. Moss, P. Schwartz, J. Towbin, G. Vincent, M. Keating (2000)
Spectrum of Mutations in Long-QT Syndrome Genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2Circulation: Journal of the American Heart Association, 102
Blaise Peterson, C. Demaria, D. Yue (1999)
Calmodulin Is the Ca2+ Sensor for Ca2+-Dependent Inactivation of L-Type Calcium ChannelsNeuron, 22
Wenyan Wang, Jing Xia, R. Kass (1998)
MinK-KvLQT1 Fusion Proteins, Evidence for Multiple Stoichiometries of the Assembled I sK Channel*The Journal of Biological Chemistry, 273
C. Biervert, Björn Schroeder, C. Kubisch, S. Berkovic, P. Propping, T. Jentsch, O. Steinlein (1998)
A potassium channel mutation in neonatal human epilepsy.Science, 279 5349
N. Schmitt, M. Schwarz, A. Peretz, I. Abitbol, B. Attali, O. Pongs (2000)
A recessive C‐terminal Jervell and Lange‐Nielsen mutation of the KCNQ1 channel impairs subunit assemblyThe EMBO Journal, 19
Chang‐Xi Bai, Iyuki Namekata, J. Kurokawa, Hikaru Tanaka, K. Shigenobu, T. Furukawa (2004)
Role of Nitric Oxide in Ca2+ Sensitivity of the Slowly Activating Delayed Rectifier K+ Current in Cardiac MyocytesCirculation Research, 96
James Kim, Smita Ghosh, Huajun Liu, M. Tateyama, R. Kass, G. Pitt (2004)
Calmodulin Mediates Ca2+ Sensitivity of Sodium Channels*Journal of Biological Chemistry, 279
R. Zühlke, G. Pitt, K. Deisseroth, R. Tsien, H. Reuter (1999)
Calmodulin supports both inactivation and facilitation of L-type calcium channelsNature, 399
R. Borgatti, C. Zucca, A. Cavallini, M. Ferrario, Chris Panzeri, P. Castaldo, M. Soldovieri, C. Baschirotto, N. Bresolin, B. Bernardina, M. Taglialatela, M. Bassi (2004)
A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardationNeurology, 63
N. Gamper, M. Shapiro (2003)
Calmodulin Mediates Ca2+-dependent Modulation of M-type K+ ChannelsThe Journal of General Physiology, 122
J. Borlak, T. Thum (2003)
Hallmarks of ion channel gene expression in end‐stage heart failureThe FASEB Journal, 17
N. Tohse (1990)
Calcium-sensitive delayed rectifier potassium current in guinea pig ventricular cells.The American journal of physiology, 258 4 Pt 2
R. Delorenzo, David Sun, L. Deshpande (2005)
Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy.Pharmacology & therapeutics, 105 3
X. Xia, B. Fakler, A. Rivard, G. Wayman, T. Johnson-Pais, J. Keen, T. Ishii, B. Hirschberg, C. Bond, S. Lutsenko, J. Maylie, J. Adelman (1998)
Mechanism of calcium gating in small-conductance calcium-activated potassium channelsNature, 395
REFERNCES
Wei-Sheng Lee, T. Ngo-Anh, A. Bruening-Wright, J. Maylie, J. Adelman (2003)
Small Conductance Ca2+-activated K+ Channels and CalmodulinJournal of Biological Chemistry, 278
I. Splawski, K. Timothy, Leah Sharpe, N. Decher, Pradeep Kumar, R. Bloise, C. Napolitano, P. Schwartz, R. Joseph, K. Condouris, H. Tager-Flusberg, S. Priori, M. Sanguinetti, M. Keating (2004)
CaV1.2 Calcium Channel Dysfunction Causes a Multisystem Disorder Including Arrhythmia and AutismCell, 119
K. Hoeflich, M. Ikura (2002)
Calmodulin in Action Diversity in Target Recognition and Activation MechanismsCell, 108
D. Roden (1998)
Taking the “Idio” out of “Idiosyncratic”: Predicting Torsades de PointesPacing and Clinical Electrophysiology, 21
R. Delorenzo, David Sun, L. Deshpande (2006)
Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266].Pharmacology & therapeutics, 111 1
M. Richards, S. Heron, H. Spendlove, I. Scheffer, B. Grinton, S. Berkovic, J. Mulley, A. Davy (2004)
Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interactionJournal of Medical Genetics, 41
M. Keating, M. Sanguinetti (2001)
Molecular and Cellular Mechanisms of Cardiac ArrhythmiasCell, 104
Amy Lee, Scott Wong, Daniel Gallagher, Bin Li, D. Storm, T. Scheuer, W. Catterall (1999)
Ca2+/calmodulin binds to and modulates P/Q-type calcium channelsNature, 399
C. Jeck, R. Zimmermann, J. Schaper, W. Schaper (1994)
Decreased expression of calmodulin mRNA in human end-stage heart failure.Journal of molecular and cellular cardiology, 26 1
James Kim, Smita Ghosh, Deborah Nunziato, G. Pitt (2004)
Identification of the Components Controlling Inactivation of Voltage-Gated Ca2+ ChannelsNeuron, 41
J. Morgan, Raymond Erny, P. Allen, William Grossman, J. Gwathmey (1990)
Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure.Circulation, 81 2 Suppl
S. Marx, J. Kurokawa, S. Reiken, H. Motoike, J. D’Armiento, A. Marks, R. Kass (2002)
Requirement of a Macromolecular Signaling Complex for β Adrenergic Receptor Modulation of the KCNQ1-KCNE1 Potassium ChannelScience, 295
H. Tan, S. Kupershmidt, Rong-huai Zhang, S. Stepanovic, D. Roden, A. Wilde, M. Anderson, J. Balser (2002)
A calcium sensor in the sodium channel modulates cardiac excitabilityNature, 415
M. Schwake, T. Jentsch, T. Friedrich (2003)
A carboxy‐terminal domain determines the subunit specificity of KCNQ K+ channel assemblyEMBO reports, 4
K. Walsh, R. Kass (1988)
Regulation of a heart potassium channel by protein kinase A and C.Science, 242 4875
C. Biervert, O. Steinlein (1999)
Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsionsHuman Genetics, 104
N. Gamper, Yang Li, M. Shapiro (2005)
Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin.Molecular biology of the cell, 16 8
C. Deutsch (2003)
The Birth of a ChannelNeuron, 40
Aaron McGee, Deborah Nunziato, J. Maltez, K. Prehoda, G. Pitt, D. Bredt (2004)
Calcium channel function regulated by the SH3-GK module in beta subunits.Neuron, 42 1
M. Tristani-Firouzi, M. Sanguinetti (1998)
Voltage‐dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunitsThe Journal of Physiology, 510
H. Kanki, S. Kupershmidt, Tao Yang, S. Wells, D. Roden (2004)
A Structural Requirement for Processing the Cardiac K+ Channel KCNQ1*Journal of Biological Chemistry, 279
J. Nitta, T. Furukawa, F. Marumo, T. Sawanobori, M. Hiraoka (1994)
Subcellular mechanism for Ca(2+)-dependent enhancement of delayed rectifier K+ current in isolated membrane patches of guinea pig ventricular myocytes.Circulation research, 74 1
K. Chien (2000)
Genomic circuits and the integrative biology of cardiac diseasesNature, 407
R. Jongbloed, A. Wilde, J. Geelen, Pieter Doevendans, Catherine Schaap, M. LangenvanI., P. TintelenvanJ., J. Cobben, G. Beaufort-Krol, J. Geraedts, H. Smeets (1999)
Novel KCNQ1 and HERG missense mutations in Dutch long‐QT familiesHuman Mutation, 13
T. Wingo, Vikas Shah, M. Anderson, T. Lybrand, W. Chazin, J. Balser (2004)
An EF-hand in the sodium channel couples intracellular calcium to cardiac excitabilityNature Structural &Molecular Biology, 11
KCNQ1 Assembly and Function Is Blocked by Long-QT Syndrome Mutations That Disrupt Interaction With Calmodulin Smita Ghosh, Deborah A. Nunziato, Geoffrey S. Pitt Abstract—Calmodulin (CaM) has been recognized as an obligate subunit for many ion channels in which its function has not been clearly established. Because channel subunits associate early during channel biosynthesis, CaM may provide a mechanism for Ca -dependent regulation of channel formation. Here we show that CaM is a constitutive component of KCNQ1 K channels, the most commonly mutated long-QT syndrome (LQTS) locus. CaM not only acts as a regulator of channel gating, relieving inactivation in a Ca -dependent manner, but it also contributes to control of channel assembly. Formation of functional tetramers requires CaM interaction with the KCNQ1 C-terminus. This CaM-regulated process is essential: LQTS mutants that disrupt CaM interaction prevent functional assembly of channels in a dominant-negative manner. These findings offer a new mechanism for LQTS defects and provide a basis for understanding novel ways that intracellular Ca and CaM regulate ion channels. (Circ Res. 2006;98:1048-1054.) Key Words: KCNQ1 K LQT1 I calmodulin long-QT syndrome v Ks he long-QT syndrome (LQTS) is a collection of inherited previous reports showing that I isaCa -responsive cur-
Circulation Research – Wolters Kluwer Health
Published: Apr 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.