Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. F. Fraga, E. Ballestar, M. F. Paz, S. Ropero, F. Setien, M. L. Ballestar, D. Heine‐Suner, J. C. Cigudosa, M. Urioste, J. Benitez, M. Boix‐Chornet, A. Sanchez‐Aguilera, C. Ling, E. Carlsson, P. Poulsen, A. Vaag, Z. Stephan, T. D. Spector, Y. Z. Wu, C. Plass, M. Esteller (2005)
Epigenetic differences arise during the lifetime of monozygotic twins, 102
M. C. Probst, H. Thumann, C. Aslanidis, T. Langmann, C. Buechler, W. Patsch, F. E. Baralle, G. M. Dallinga‐Thie, J. Geisel, C. Keller, V. C. Menys, G. Schmitz (2004)
Screening for functional sequence variations and mutations in ABCA1, 175
H. Cui, M. Cruz‐Correa, F. M. Giardiello, D. F. Hutcheon, D. R. Kafonek, S. Brandenburg, Y. Wu, X. He, N. R. Powe, A. P. Feinberg (2003)
Loss of IGF2 imprinting: a potential marker of colorectal cancer risk, 299
R. F. Thompson, M. Suzuki, K. W. Lau, J. M. Greally (2009)
A pipeline for the quantitative analysis of CG dinucleotide methylation using mass spectrometry, 25
H. M. Byun, K. D. Siegmund, F. Pan, D. J. Weisenberger, G. Kanel, P. W. Laird, A. S. Yang (2009)
Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue‐ and individual‐specific DNA methylation patterns, 18
S. K. Ooi, C. Qiu, E. Bernstein, K. Li, D. Jia, Z. Yang, H. Erdjument‐Bromage, P. Tempst, S. P. Lin, C. D. Allis, X. Cheng, T. H. Bestor (2007)
DNMT3L connects un‐methylated lysine 4 of histone H3 to de novo methylation of DNA, 448
(2003)
The International HapMap Project, 426
D. Pons, F. R. Vries, P. J. Elsen, B. T. Heijmans, P. H. Quax, J. W. Jukema (2009)
Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease, 30
M. Ehrich, J. Turner, P. Gibbs, L. Lipton, M. Giovanneti, C. Cantor, D. Boom (2008)
Cytosine methylation profiling of cancer cell lines, 105
W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, D. Haussler (2002)
The human genome browser at UCSC, 12
M. Ehrich, M. R. Nelson, P. Stanssens, M. Zabeau, T. Liloglou, G. Xinarianos, C. R. Cantor, J. K. Field, D. Boom (2005)
Quantitative high‐throughput analysis of DNA methylation patterns by base‐specific cleavage and mass spectrometry, 102
I. Sandovici, M. Leppert, P. R. Hawk, A. Suarez, Y. Linares, C. Sapienza (2003)
Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions, 12
B. E. Hayward, M. Kamiya, L. Strain, V. Moran, R. Campbell, Y. Hayashizaki, D. T. Bonthron (1998)
The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins, 95
L. Shen, R. A. Waterland (2007)
Methods of DNA methylation analysis, 10
B. E. McGill, S. F. Bundle, M. B. Yaylaoglu, J. P. Carson, C. Thaller, H. Y. Zoghbi (2006)
Enhanced anxiety and stress‐induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome, 103
V. K. Rakyan, T. Hildmann, K. L. Novik, J. Lewin, J. Tost, A. V. Cox, T. D. Andrews, K. L. Howe, T. Otto, A. Olek, J. Fischer, I. G. Gut, K. Berlin, S. Beck (2004)
DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project, 2
A. L. Rosa, Y. Q. Wu, B. Kwabi‐Addo, K. J. Coveler, S. V. Reid, L. G. Shaffer (2005)
Allele‐specific methylation of a functional CTCF binding site upstream of MEG3 in the human imprinted domain of 14q32, 13
P. Medstrand, J. R. Landry, D. L. Mager (2001)
Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C‐I genes in humans, 276
D. I. Boomsma, E. J. Geus, J. M. Vink, J. H. Stubbe, M. A. Distel, J. J. Hottenga, D. Posthuma, T. C. Beijsterveldt, J. J. Hudziak, M. Bartels, G. Willemsen (2006)
Netherlands Twin Register: from twins to twin families, 9
A. Petronis (2001)
Human morbid genetics revisited: relevance of epigenetics, 17
T. Kouzarides (2007)
Chromatin modifications and their function, 128
B. E. Bernstein, A. Meissner, E. S. Lander (2007)
The mammalian epigenome, 128
C. Bock, J. Walter, M. Paulsen, T. Lengauer (2008)
Inter‐individual variation of DNA methylation and its implications for large‐scale epigenome mapping [Online], 36
A. P. Feinberg (2008)
Epigenetics at the epicenter of modern medicine, 299
D. L. Foley, J. M. Craig, R. Morley, C. J. Olsson, T. Dwyer, K. Smith, R. Saffery (2009)
Prospects for epigenetic epidemiology, 169
D. G. Altman (1991)
Practical Statistics for Medical Research
T. Kouzarides (2007)
SnapShot: histone‐modifying enzymes, 128
D. Bourc'his, G. L. Xu, C. S. Lin, B. Bollman, T. H. Bestor (2001)
Dnmt3L and the establishment of maternal genomic imprints, 294
B. West, K. Welch, A. Galecki (2006)
Linear Mixed Models: A Practical Guide Using Statistical Software
B. T. Heijmans, D. Kremer, E. W. Tobi, D. I. Boomsma, P. E. Slagboom (2007)
Heritable rather than age‐related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus, 16
I. Melzner, V. Scott, K. Dorsch, P. Fischer, M. Wabitsch, S. Bruderlein, C. Hasel, P. Moller (2002)
Leptin gene expression in human preadipocytes is switched on by maturation‐induced demethylation of distinct CpGs in its proximal promoter, 277
R. Lister, M. Pelizzola, R. H. Dowen, R. D. Hawkins, G. Hon, J. Tonti‐Filippini, J. R. Nery, L. Lee, Z. Ye, Q. M. Ngo, L. Edsall, J. ntosiewicz‐Bourget, R. Stewart, V. Ruotti, A. H. Millar, J. A. Thomson, B. Ren, J. R. Ecker (2009)
Human DNA methylomes at base resolution show widespread epigenomic differences, 462
P. Stanssens, M. Zabeau, G. Meersseman, G. Remes, Y. Gansemans, N. Storm, R. Hartmer, C. Honisch, C. P. Rodi, S. Bocker, D. Boom (2004)
High‐throughput MALDI‐TOF discovery of genomic sequence polymorphisms, 14
M. M. Suzuki, A. Bird (2008)
DNA methylation landscapes: provocative insights from epigenomics, 9
E. W. Tobi, L. H. Lumey, R. P. Talens, D. Kremer, H. Putter, A. D. Stein, P. E. Slagboom, B. T. Heijmans (2009)
DNA methylation differences after exposure to prenatal famine are common and timing‐ and sex‐specific, 18
P. Arnaud, D. Monk, M. Hitchins, E. Gordon, W. Dean, C. V. Beechey, J. Peters, W. Craigen, M. Preece, P. Stanier, G. E. Moore, G. Kelsey (2003)
Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark, 12
B. T. Heijmans, E. W. Tobi, L. H. Lumey, P. E. Slagboom (2009)
The epigenome: Archive of the prenatal environment, 4
M. P. Turunen, E. Aavik, S. Yla‐Herttuala (2009)
Epigenetics and atherosclerosis, 1790
Z. D. Smith, H. Gu, C. Bock, A. Gnirke, A. Meissner (2009)
High‐throughput bisulfite sequencing in mammalian genomes, 48
O. El‐Maarri, T. Becker, J. Junen, S. S. Manzoor, A. az‐Lacava, R. Schwaab, T. Wienker, J. Oldenburg (2007)
Gender‐specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males, 122
L. Lumey, A. D. Stein, H. S. Kahn, K. M. Pal‐de Bruin, G. Blauw, P. A. Zybert, E. S. Susser (2007)
Cohort profile: the Dutch Hunger Winter Families Study, 36
H. T. Bjornsson, M. I. Sigurdsson, M. D. Fallin, R. A. Irizarry, T. Aspelund, H. Cui, W. Yu, M. A. Rongione, T. J. Ekstrom, T. B. Harris, L. J. Launer, G. Eiriksdottir, M. F. Leppert, C. Sapienza, V. Gudnason, A. P. Feinberg (2008)
Intra‐individual change over time in DNA methylation with familial clustering, 299
B. E. Hayward, D. T. Bonthron (2000)
An imprinted antisense transcript at the human GNAS1 locus, 9
J. Dong, C. Ivascu, H. D. Chang, P. Wu, R. Angeli, L. Maggi, F. Eckhardt, L. Tykocinski, C. Haefliger, B. Mowes, J. Sieper, A. Radbruch, F. Annunziato, A. Thiel (2007)
IL‐10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes, 179
R. M. Adkins, J. N. Fain, J. Krushkal, C. K. Klauser, E. F. Magann, J. C. Morrison (2007)
Association between paternally inherited haplotypes upstream of the insulin gene and umbilical cord IGF‐II levels, 62
I. C. Weaver, N. Cervoni, F. A. Champagne, A. C. D'Alessio, S. Sharma, J. R. Seckl, S. Dymov, M. Szyf, M. J. Meaney (2004)
Epigenetic programming by maternal behavior, 7
M. S. Ally, R. Al‐Ghnaniem, M. Pufulete (2009)
The relationship between gene‐specific DNA methylation in leukocytes and normal colorectal mucosa in subjects with and without colorectal tumors, 18
R. Jaenisch, A. Bird (2003)
Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals, 33
L. C. Li, R. Dahiya (2002)
MethPrimer: designing primers for methylation PCRs, 18
R. A. Waterland, K. B. Michels (2007)
Epigenetic Epidemiology of the developmental origins hypothesis, 27
V. Bollati, J. Schwartz, R. Wright, A. Litonjua, L. Tarantini, H. Suh, D. Sparrow, P. Vokonas, A. Baccarelli (2009)
Decline in genomic DNA methylation through aging in a cohort of elderly subjects, 130
M. W. Coolen, A. L. Statham, M. Gardiner‐Garden, S. J. Clark (2007)
Genomic profiling of CpG methylation and allelic specificity using quantitative high‐throughput mass spectrometry: critical evaluation and improvements [Online], 35
G. M. Martin (2005)
Epigenetic drift in aging identical twins, 102
D. I. Boomsma, G. Willemsen, P. F. Sullivan, P. Heutink, P. Meijer, D. Sondervan, C. Kluft, G. Smit, W. A. Nolen, F. G. Zitman, J. H. Smit, W. J. Hoogendijk, D. R. Van, E. J. Geus, B. W. Penninx (2008)
Genome‐wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects, 16
Y. Ito, T. Koessler, A. E. Ibrahim, S. Rai, S. L. Vowler, S. bu‐Amero, A. L. Silva, A. T. Maia, J. E. Huddleston, S. Uribe‐Lewis, K. Woodfine, M. Jagodic, R. Nativio, A. Dunning, G. Moore, E. Klenova, S. Bingham, P. D. Pharoah, J. D. Brenton, S. Beck, M. S. Sandhu, A. Murrell (2008)
Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer, 17
K. Mitsuya, M. Meguro, M. P. Lee, M. Katoh, T. C. Schulz, H. Kugoh, M. A. Yoshida, N. Niikawa, A. P. Feinberg, M. Oshimura (1999)
LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids, 8
R. A. Waterland, R. L. Jirtle (2003)
Transposable elements: targets for early nutritional effects on epigenetic gene regulation, 23
S. Ramchandani, S. K. Bhattacharya, N. Cervoni, M. Szyf (1999)
DNA methylation is a reversible biological signal, 96
B. T. Heijmans, E. W. Tobi, A. D. Stein, H. Putter, G. J. Blauw, E. S. Susser, P. E. Slagboom, L. H. Lumey (2008)
Persistent epigenetic differences associated with prenatal exposure to famine in humans, 105
R. A. Irizarry, C. Ladd‐Acosta, B. Wen, Z. Wu, C. Montano, P. Onyango, H. Cui, K. Gabo, M. Rongione, M. Webster, H. Ji, J. B. Potash, S. Sabunciyan, A. P. Feinberg (2009)
The human colon cancer methylome shows similar hypo‐ and hypermethylation at conserved tissue‐specific CpG island shores, 41
J. G. Herman, J. R. Graff, S. Myohanen, B. D. Nelkin, S. B. Baylin (1996)
Methylation‐specific PCR: a novel PCR assay for methylation status of CpG islands, 93
K. E. Sullivan, A. B. Reddy, K. Dietzmann, A. R. Suriano, V. P. Kocieda, M. Stewart, M. Bhatia (2007)
Epigenetic regulation of tumor necrosis factor alpha, 27
The prospect of finding epigenetic risk factors for complex diseases would be greatly enhanced if DNA from existing biobanks, which is generally extracted from whole blood, could be used to perform epigenetic association studies. We characterized features of DNA methylation at 16 candidate loci, 8 of which were imprinted, in DNA samples from the Netherlands Twin Register biobank. Except for un‐methylated or fully methylated sites, CpG methylation varied considerably in a sample of 30 unrelated individuals. This variation remained after accounting for the cellular heterogeneity of blood. Methylation of CpG sites was correlated within loci and, for 4 imprinted loci, across chromosomes. In 34 additional individuals, we investigated the DNA methylation of 8 representative loci in 2 longitudinal blood and 2 longitudinal buccal cell samples (follow‐up 11–20 and 2–8 yr, respectively). Five of 8 loci were stable over time (ρ>0.75) in both tissues, indicating that prospective epigenetic studies may be possible. For 4 loci, the DNA methylation in blood (mesoderm) correlated with that in the buccal cells (ectoderm) (ρ>0.75). Our data suggest that epigenetic studies on complex diseases may be feasible for a proportion of genomic loci provided that they are carefully designed.—Talens, R. P., Boomsma, D. I., Tobi, E. W., Kremer, D., Jukema, J. W., Willemsen, G., Putter, H., Slagboom, P. E., Heijmans, B. T. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J. 24, 3135–3144 (2010). www.fasebj.org
The FASEB journal – Wiley
Published: Sep 1, 2010
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.