Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Mahmood, B. Swain, H. Jung (2014)
Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells.Nanoscale, 6 15
D. Mitzi, K. Liang (1997)
Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH2CH=NH2SnI3and Related SystemsIEEE Journal of Solid-state Circuits, 134
E. Hoke, Daniel Slotcavage, E. Dohner, A. Bowring, H. Karunadasa, M. McGehee (2014)
Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file.Chemical Science, 6
Hui‐Seon Kim, I. Mora‐Seró, Victoria González‐Pedro, F. Fabregat‐Santiago, E. Juárez-Pérez, N. Park, J. Bisquert (2013)
Mechanism of carrier accumulation in perovskite thin-absorber solar cellsNature Communications, 4
N. Pellet, P. Gao, G. Gregori, Tae-Youl Yang, M. Nazeeruddin, J. Maier, M. Grätzel (2014)
Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting.Angewandte Chemie, 53 12
Dae-Yong Son, J. Im, Hui‐Seon Kim, N. Park (2014)
11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection SystemJournal of Physical Chemistry C, 118
Namyoung Ahn, Dae-Yong Son, I. Jang, S. Kang, Mansoo Choi, N. Park (2015)
Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide.Journal of the American Chemical Society, 137 27
H. Jung, N. Park (2015)
Perovskite solar cells: from materials to devices.Small, 11 1
C. Stoumpos, C. Malliakas, M. Kanatzidis (2013)
Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorganic chemistry, 52 15
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
J. Im, I. Jang, N. Pellet, M. Grätzel, N. Park (2014)
Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells.Nature nanotechnology, 9 11
Woon Yang, J. Noh, N. Jeon, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
High-performance photovoltaic perovskite layers fabricated through intramolecular exchangeScience, 348
Guangda Niu, Wenzhe Li, F. Meng, Liduo Wang, Haopeng Dong, Y. Qiu (2014)
Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cellsJournal of Materials Chemistry, 2
J. Johnson, P. Agron, M. Bredig (1955)
Molar Volume and Structure of Solid and Molten Cesium Halides1Journal of the American Chemical Society, 77
H. Lin, C. Huang, Wei Li, C. Ni, S. Shah, Y. Tseng (2006)
Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenolApplied Catalysis B-environmental, 68
Andreas Binek, Fabian Hanusch, P. Docampo, T. Bein (2015)
Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide.The journal of physical chemistry letters, 6 7
A. Dementjev, de Graaf, Van Sanden, K. Maslakov, A. Naumkin, A. Serov (2000)
X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen filmsDiamond and Related Materials, 9
Matthew Leyden, Michael Lee, Sonia Raga, Y. Qi (2015)
Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrationsJournal of Materials Chemistry, 3
G. Xing, N. Mathews, Shuangyong Sun, Swee Lim, Y. Lam, M. Grätzel, S. Mhaisalkar, T. Sum (2013)
Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3Science, 342
G. Eperon, S. Stranks, C. Menelaou, M. Johnston, L. Herz, H. Snaith (2014)
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy and Environmental Science, 7
N. Park (2013)
Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar CellJournal of Physical Chemistry Letters, 4
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
Hsin‐Sheng Duan, Huanping Zhou, Qi Chen, Pengyu Sun, Song Luo, Tze‐Bin Song, B. Bob, Yang Yang (2015)
The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics.Physical chemistry chemical physics : PCCP, 17 1
Hui‐Seon Kim, Jin‐Wook Lee, Natalia Yantara, P. Boix, S. Kulkarni, S. Mhaisalkar, M. Grätzel, N. Park (2013)
High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.Nano letters, 13 6
D. Seol, Jin‐Wook Lee, N. Park (2015)
On the Role of Interfaces in Planar-Structured HC(NH2 )2 PbI3 Perovskite Solar Cells.ChemSusChem, 8 14
Hui‐Seon Kim, S. Im, N. Park (2014)
Organolead Halide Perovskite: New Horizons in Solar Cell ResearchJournal of Physical Chemistry C, 118
Waleed Laban, L. Etgar (2013)
Depleted hole conductor-free lead halide iodide heterojunction solar cellsEnergy and Environmental Science, 6
Qi Wang, Yuchuan Shao, Qingfeng Dong, Zhengguo Xiao, Yong-bo Yuan, Jinsong Huang (2014)
Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-processEnergy and Environmental Science, 7
A. Amat, E. Mosconi, Enrico Ronca, C. Quarti, P. Umari, Md. Nazeeruddin, M. Grätzel, F. Angelis (2014)
Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting.Nano letters, 14 6
Jin‐Wook Lee, Taek-Yong Lee, P. Yoo, M. Grätzel, S. Mhaisalkar, N. Park (2014)
Rutile TiO2-based perovskite solar cellsJournal of Materials Chemistry, 2
D. Trots, S. Myagkota (2008)
High-temperature structural evolution of caesium and rubidium triiodoplumbatesJournal of Physics and Chemistry of Solids, 69
Seung-Hwan Oh, Seok‐In Na, Jang Jo, Bogyu Lim, Doojin Vak, Dong‐Yu Kim (2010)
Water‐Soluble Polyfluorenes as an Interfacial Layer Leading to Cathode‐Independent High Performance of Organic Solar CellsAdvanced Functional Materials, 20
S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore, F. Piersimoni, J. Manca, A. Belghachi, M. Burgelman (2011)
Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6,6)-phenyl C61-butyric acid methyl ester organic solar cells degraded under air exposureJournal of Applied Physics, 110
S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith (2013)
Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite AbsorberScience, 342
Yuanyuan Han, Steffen Meyer, Yasmina Dkhissi, Karl Weber, J. Pringle, U. Bach, L. Spiccia, Yi-bing Cheng (2015)
Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidityJournal of Materials Chemistry, 3
R. Lindblad, Naresh Jena, Bertrand Philippe, J. Oscarsson, Dongqin Bi, A. Lindblad, S. Mandal, B. Pal, D. Sarma, O. Karis, H. Siegbahn, E. Johansson, M. Odelius, H. Rensmo (2015)
Electronic Structure of CH3NH3PbX3 Perovskites : Dependence on the Halide MoietyJournal of Physical Chemistry C, 119
Hui‐Seon Kim, Chang-Ryul Lee, J. Im, Ki-Beom Lee, T. Moehl, Arianna Marchioro, S. Moon, R. Humphry‐Baker, Jun‐Ho Yum, J. Moser, M. Grätzel, N. Park (2012)
Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%Scientific Reports, 2
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
Jin‐Wook Lee, Seunghee Lee, H. Ko, Jeong Kwon, J. Park, S. Kang, Namyoung Ahn, Mansoo Choi, J. Kim, N. Park (2015)
Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cellsJournal of Materials Chemistry, 3
Minglei Hu, Linfeng Liu, Anyi Mei, Ying Yang, Tongfa Liu, Hongwei Han (2014)
Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3Journal of Materials Chemistry, 2
K. Suzue, S. Mohammad, Z. Fan, Wook Kim, Ö. Aktas, A. Botchkarev, H. Morkoç (1996)
Electrical conduction in platinum–gallium nitride Schottky diodesJournal of Applied Physics, 80
Huanping Zhou, Qi Chen, Gang Li, Song Luo, T. Song, Hsin‐Sheng Duan, Z. Hong, J. You, Yongsheng Liu, Yang Yang (2014)
Interface engineering of highly efficient perovskite solar cellsScience, 345
Jin‐Wook Lee, D. Seol, An-Na Cho, N. Park (2014)
High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3Advanced Materials, 26
Di Zhu, Jiuru Xu, A. Noemaun, J. Kim, E. Schubert, M. Crawford, D. Koleske (2009)
The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodesApplied Physics Letters, 94
N. Jeon, J. Noh, Woon Yang, Young Kim, Seungchan Ryu, Jangwon Seo, S. Seok (2015)
Compositional engineering of perovskite materials for high-performance solar cellsNature, 517
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
S. Ito, Soichiro Tanaka, Kyohei Manabe, H. Nishino (2014)
Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar CellsJournal of Physical Chemistry C, 118
S. Pang, Hao Hu, Jiliang Zhang, S. Lv, Yaming Yu, Feng Wei, Tian-shi Qin, Hongxia Xu, Zhihong Liu, G. Cui (2014)
NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar CellsChemistry of Materials, 26
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
T. Koh, Kunwu Fu, Yanan Fang, Shi Chen, T. Sum, N. Mathews, S. Mhaisalkar, P. Boix, T. Baikie (2014)
Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar CellsJournal of Physical Chemistry C, 118
N. Jeon, J. Noh, Young Kim, Woon Yang, Seungchan Ryu, S. Seok (2014)
Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.Nature materials, 13 9
R. Misra, S. Aharon, Baili Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, E. Katz (2015)
Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight.The journal of physical chemistry letters, 6 3
L. Ono, Sonia Raga, M. Remeika, A. Winchester, Atsushi Gabe, Y. Qi (2015)
Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditionsJournal of Materials Chemistry, 3
B. Conings, Jeroen Drijkoningen, N. Gauquelin, Aslihan Babayigit, J. D’Haen, Lien D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. Angelis, H. Boyen (2015)
Intrinsic Thermal Instability of Methylammonium Lead Trihalide PerovskiteAdvanced Energy Materials, 5
Although power conversion efficiency (PCE) of state‐of‐the‐art perovskite solar cells has already exceeded 20%, photo‐ and/or moisture instability of organolead halide perovskite have prevented further commercialization. In particular, the underlying weak interaction of organic cations with surrounding iodides due to eight equivalent orientations of the organic cation along the body diagonals in unit cell and chemically non‐inertness of organic cation result in photo‐ and moisture instability of organometal halide perovskite. Here, a perovskite light absorber incorporating organic–inorganic hybrid cation in the A‐site of 3D APbI3 structure with enhanced photo‐ and moisture stability is reported. A partial substitution of Cs+ for HC(NH2)2+ in HC(NH2)2PbI3 perovskite is found to substantially improve photo‐ and moisture stability along with photovoltaic performance. When 10% of HC(NH2)2+ is replaced by Cs+, photo‐ and moisture stability of perovskite film are significantly improved, which is attributed to the enhanced interaction between HC(NH2)2+ and iodide due to contraction of cubo‐octahedral volume. Moreover, trap density is reduced by one order of magnitude upon incorporation of Cs+, which is responsible for the increased open‐circuit voltage and fill factor, eventually leading to enhancement of average PCE from 14.9% to 16.5%.
Advanced Energy Materials – Wiley
Published: Oct 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.