Access the full text.
Sign up today, get DeepDyve free for 14 days.
Kristina Straub, M. Benz, Bernhard Schink, F. Widdel (1996)
Anaerobic, nitrate-dependent microbial oxidation of ferrous ironApplied and Environmental Microbiology, 62
R. Huber, Petra Rossnagel, C. Woese, R. Rachel, T. Langworthy, K. Stetter (1996)
Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov.Systematic and applied microbiology, 19 1
A. Remde, R. Conrad (1991)
Metabolism of nitric oxide in soil and denitrifying bacteriaFems Microbiology Letters, 85
J. Escalante‐Semerena, K. Rinehart, R. Wolfe (1984)
Tetrahydromethanopterin, a carbon carrier in methanogenesis.The Journal of biological chemistry, 259 15
J. Zeikus, G. Fuchs, W. Kenealy, R. Thauer (1977)
Oxidoreductases Involved in Cell Carbon Synthesis of Methanobacterium thermoautotrophicumJournal of Bacteriology, 132
K. Stetter, R. Huber, E. Blöchl, M. Kurr, R. Eden, M. Fielder, H. Cash, I. Vance (1993)
Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirsNature, 365
L. Gorris, A. Voet, C. Drift (1991)
Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus.BioFactors, 3 1
M. Donnelly, R. Wolfe (1986)
The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide.The Journal of biological chemistry, 261 35
P. Smith, R. Krohn, G. Hermanson, A. Mallia, F. Gartner, M. Provenzano, E. Fujimoto, N. Goeke, B. Olson, D. Klenk (1985)
Measurement of protein using bicinchoninic acid.Analytical biochemistry, 150 1
D. Steenkamp, H. Peck (1981)
Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans.The Journal of biological chemistry, 256 11
K. Stetter (1988)
Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteriaSystematic and Applied Microbiology, 10
P. V�lkl, R. Huber, E. Drobner, R. Rachel, S. Burggraf, A. Trincone, K. Stetter (1993)
Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeumApplied and Environmental Microbiology, 59
K. Stetter, G. Lauerer, M. Thomm, A. Neuner (1987)
Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of ArchaebacteriaScience, 236
L. Achenbach-Richter, K. Stetter, C. Woese (1987)
A possible biochemical missing link among archaebacteriaNature, 327
P. Weimer, J. Zeikus (1979)
Acetate assimilation pathway of Methanosarcina barkeriJournal of Bacteriology, 137
D. Hafenbradl, M. Keller, R. Dirmeier, R. Rachel, Petra Rossnagel, S. Burggraf, H. Huber, K. Stetter (1996)
Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditionsArchives of Microbiology, 166
I. Ekiel, I. Smith, G. Sprott (1983)
Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonanceJournal of Bacteriology, 156
J. Breitung, G. Börner, S. Scholz, D. Linder, K. Stetter, R. Thauer (1992)
Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran:tetrahydromethanopterin formyltransferase from the extreme thermophile Methanopyrus kandleri.European journal of biochemistry, 210 3
R. Mancinelli, L. Hochstein (1986)
The occurrence of denitrification in extremely halophilic bacteria.FEMS microbiology letters, 35
(1991)
Bacterial assimilation of carbon dioxide by the Calvin cycle
R. Thauer, J. Kunow (1995)
Sulfate-Reducing Archaea
A. Bollmann, R. Conrad (1997)
Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxideSoil Biology & Biochemistry, 29
(1989)
Alternative pathways of autotrophic CO2 fixation
(1994)
F 420 H 2 : quinone oxidoreductase from Archaeoglobus fulgidus : characterization of a membrane - bound multisubunit complex containing FAD and iron - sulfur clusters
L. Smith (1978)
Bacterial cytochromes and their spectral characterization.Methods in enzymology, 53
S. Bickel-Sandkötter, W. Gärtner, M. Dane (1996)
Conversion of energy in halobacteria: ATP synthesis and phototaxisArchives of Microbiology, 166
J. Breitung, R. Schmitz, K. Stetter, R. Thauer (1991)
N5,N10-Methenyltetrahydromethanopterin cyclohydrolase from the extreme thermophile Methanopyrus kandleri: increase of catalytic efficiency (kcat/KM) and thermostability in the presence of saltsArchives of Microbiology, 156
I. Ekiel, G. Sprott, G. Patel (1985)
Acetate and CO2 assimilation by Methanothrix conciliiJournal of Bacteriology, 162
S. Burggraf, H. Jannasch, B. Nicolaus, K. Stetter (1990)
Archaeoglobus profundus sp. nov., Represents a New Species within the Sulfate-reducing ArchaebacteriaSystematic and Applied Microbiology, 13
L. Gorris, C. Drift, G. Vogels (1988)
Separation and quantification of cofactors from methanogenic bacteria by high-performance liquid chromatography: optimum and routine analysesJournal of Microbiological Methods, 8
The strictly anaerobic Archaeon Ferroglobus placidus was grown chemolithoautotrophically on H 2 and nitrate and analyzed for enzymes and coenzymes possibly involved in autotrophic CO 2 fixation. The following enzymes were found (values in parentheses = μmol min –1 (mg protein) –1 ): formylmethanofuran dehydrogenase (0.2), formylmethanofuran:tetrahydromethanopterin formyltransferase (0.6), methenyltetrahydromethanopterin cyclohydrolase (10), F 420 -dependent methylenetetrahydromethanopterin dehydrogenase (1.5), F 420 -dependent methylenetetrahydromethanopterin reductase (0.4), and carbon monoxide dehydrogenase (0.1). The cells contained coenzyme F 420 (0.4 nmol/mg protein), tetrahydromethanopterin (0.9 nmol/ mg protein), and cytochrome b (4 nmol/mg membrane protein). From the enzyme and coenzyme composition of the cells, we deduced that autotrophic CO 2 fixation in F. placidus proceeds via the carbon monoxide dehydrogenase pathway as in autotrophically growing Archaeoglobus and Methanoarchaea species. Evidence is also presented that cell extracts of F. placidus catalyze the reduction of two molecules of nitrite to 1 N 2 O with NO as intermediate (0.1 μmol N 2 O formed per min and mg protein), showing that – at least in principle – F. placidus has a denitrifying capacity.
Archives of Microbiology – Springer Journals
Published: Jan 1, 1997
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.