Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Cheng, Yuhong Yang, Lixin Wang, Qiyang He, Yi Liu (2003)
WHITE COLLAR-1, a Multifunctional NeurosporaProtein Involved in the Circadian Feedback Loops, Light Sensing, and Transcription Repression of wc-2*The Journal of Biological Chemistry, 278
Eva Huala, P. Oeller, Emmanuel Liscum, In-Seob Han, Elise Larsen, Winslow Briggs (1997)
Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain.Science, 278 5346
S. Gurr (1987)
The structure and organization of nuclear genes of filamentous fungi
C. Talora, Lisa Franchi, Lisa Franchi, H. Linden, P. Ballario, G. Macino (1999)
Role of a white collar‐1–white collar‐2 complex in blue‐light signal transductionThe EMBO Journal, 18
A. Idnurm, J. Heitman (2005)
Light Controls Growth and Development via a Conserved Pathway in the Fungal KingdomPLoS Biology, 3
L. Brunick, M. Zolan (1999)
Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutantsCurrent Genetics, 36
A. Froehlich, Yi Liu, J. Loros, J. Dunlap (2002)
White Collar-1, a Circadian Blue Light Photoreceptor, Binding to the frequency PromoterScience, 297
M. Zolan, P. Pukkila (1986)
Inheritance of DNA methylation in Coprinus cinereusMolecular and Cellular Biology, 6
P. Cheng, Yuhong Yang, K. Gardner, Yi Liu (2002)
PAS Domain-Mediated WC-1/WC-2 Interaction Is Essential for Maintaining the Steady-State Level of WC-1 and the Function of Both Proteins in Circadian Clock and Light Responses of NeurosporaMolecular and Cellular Biology, 22
B. Lu (2000)
The control of meiosis progression in the fungus Coprinus cinereus by light/dark cycles.Fungal genetics and biology : FG & B, 31 1
Kazumi Inada, Yoshinori Morimoto, Toshi-hide Arima, Y. Murata, T. Kamada (2001)
The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development.Genetics, 157 1
P. Devlin (2002)
Signs of the time: environmental input to the circadian clock.Journal of experimental botany, 53 374
R. Ambra, B. Grimaldi, S. Zamboni, P. Filetici, G. Macino, P. Ballario (2004)
Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa.Fungal genetics and biology : FG & B, 41 7
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool.Journal of molecular biology, 215 3
U. Kües (2000)
Life History and Developmental Processes in the Basidiomycete Coprinus cinereusMicrobiology and Molecular Biology Reviews, 64
S. Crosson, K. Moffat (2001)
Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transductionProceedings of the National Academy of Sciences of the United States of America, 98
P. Rao, D. Niederpruem (1969)
Carbohydrate Metabolism During Morphogenesis of Coprinus lagopus (sensu Buller)Journal of Bacteriology, 100
R. Durand, M. Furuya (1985)
Action spectra for stimulatory and inhibitory effects of UV and blue light on fruit-body formation in Coprinus congregatusPlant and Cell Physiology, 26
C. Schwerdtfeger, H. Linden (2003)
VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptationThe EMBO Journal, 22
Qiyang He, P. Cheng, Yuhong Yang, Lixin Wang, K. Gardner, Yi Liu (2002)
White Collar-1, a DNA Binding Transcription Factor and a Light SensorScience, 297
H. Linden, G. Macino (1997)
White collar 2, a partner in blue‐light signal transduction, controlling expression of light–regulated genes in Neurospora crassaThe EMBO Journal, 16
J. Bacteriol
H. Muraguchi, T. Kamada (2000)
A mutation in the eln2 gene encoding a cytochrome P450 of Coprinus cinereus affects mushroom morphogenesis.Fungal genetics and biology : FG & B, 29 1
C. Skrzynia, D. Binninger, J. Alspaugh, P. Pukkila (1989)
Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus.Gene, 81 1
T. Kamada, Ritsuko Kurita, T. Takemaru (1978)
Effects of light on basidiocarp maturation in Coprinus macrorhizusPlant and Cell Physiology, 19
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool. Journal of Molecular Biology
D. Binninger, C. Skrzynia, P. Pukkila, L. Casselton (1987)
DNA‐mediated transformation of the basidiomycete Coprinus cinereus.The EMBO Journal, 6
Y. Tsusué (1969)
EXPERIMENTAL CONTROL OF FRUIT‐BODY FORMATION IN COPRINUS MACRORHIZUSDevelopment, 11
M. Zolan, J. Crittenden, N. Heyler, L. Seitz (1992)
Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome-specific libraries.Nucleic acids research, 20 15
H. Shahriari, L. Casselton (1974)
Suppression of methionine mutants in CoprinusMolecular and General Genetics MGG, 134
K. Nozue, T. Kanegae, T. Imaizumi, S. Fukuda, H. Okamoto, K. Yeh, J. Lagarias, M. Wada (1998)
A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1.Proceedings of the National Academy of Sciences of the United States of America, 95 26
J. Sambrook, E. Fritsch, T. Maniatis (2001)
Molecular Cloning: A Laboratory Manual
J. Christie, W. Briggs (2001)
Blue Light Sensing in Higher Plants*The Journal of Biological Chemistry, 276
P. Cheng, Qiyang He, Yuhong Yang, Lixin Wang, Yi Liu (2003)
Functional conservation of light, oxygen, or voltage domains in light sensingProceedings of the National Academy of Sciences of the United States of America, 100
David Nelson, Jamie Lasswell, Luise Rogg, Mindy Cohen, B. Bartel (2000)
FKF1, a Clock-Controlled Gene that Regulates the Transition to Flowering in ArabidopsisCell, 101
H. Muraguchi, T. Kamada (1998)
The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting.Development, 125 16
P. Pukkila, L. Casselton (1991)
6 – Molecular Genetics of the Agaric Coprinus cinereus
R. Banerjee, A. Batschauer (2004)
Plant blue-light receptorsPlanta, 220
C. Heintzen, J. Loros, J. Dunlap (2001)
The PAS Protein VIVID Defines a Clock-Associated Feedback Loop that Represses Light Input, Modulates Gating, and Regulates Clock ResettingCell, 104
D. Denault, J. Loros, J. Dunlap (2001)
WC‐2 mediates WC‐1–FRQ interaction within the PAS protein‐linked circadian feedback loop of NeurosporaThe EMBO Journal, 20
P. Ballario, P. Vittorioso, A. Magrelli, C. Talora, A. Cabibbo, G. Macino (1996)
White collar‐1, a central regulator of blue light responses in Neurospora, is a zinc finger protein.The EMBO Journal, 15
Kwangwon Lee, J. Loros, J. Dunlap (2000)
Interconnected feedback loops in the Neurospora circadian system.Science, 289 5476
S. Casas-Flores, Mauricio Ríos-Momberg, M. Bibbins, P. Ponce-Noyola, A. Herrera-Estrella (2004)
BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride.Microbiology, 150 Pt 11
(1991)
Molecular genetics of the agaric Coprinus cinereus, pp. 126–150 in More Gene Manipulations in Fungi
Zolan for the REMI mutant strains, R1428 and H1-1280. This work was supported in part by a grant-in-aid from the Japanese Society for the Promotion of LITERATURE CITED
R. Durand, R. Jacques (1982)
Action spectra for fruiting of the mushroom Coprinus congregatusArchives of Microbiology, 132
H. Muraguchi, T. Takemaru, T. Kamada (1999)
Isolation and characterization of developmental variants in fruiting using a homokaryotic fruiting strain ofCoprinus cinereusMycoscience, 40
D. Somers, T. Schultz, M. Milnamow, S. Kay (2000)
ZEITLUPE Encodes a Novel Clock-Associated PAS Protein from ArabidopsisCell, 101
B. Taylor, I. Zhulin (1999)
PAS Domains: Internal Sensors of Oxygen, Redox Potential, and LightMicrobiology and Molecular Biology Reviews, 63
Toshi-hide Arima, T. Okida, T. Morinaga (1996)
Behavior of chromosomes after meiosis inCoprinus cinereusMycoscience, 37
The homobasidiomycete Coprinus cinereus exhibits remarkable photomorphogenesis during fruiting-body development. Under proper light conditions, fruiting-body primordia proceed to the maturation phase in which basidia in the pileus undergo meiosis, producing sexual spores, followed by stipe elongation and pileus expansion for efficient dispersal of the spores. In the continuous darkness, however, the primordia do not proceed to the maturation phase but are etiolated: the pileus and stipe tissues at the upper part of the primordium remain rudimentary and the basal part of the primordium elongates, producing “dark stipe.” In this study we genetically analyzed five strains that produce dark stipes even if light conditions promoting the maturation are given and then characterized one of them, Uar801 (dst1-1). The dst1 gene was cloned as a DNA fragment that rescues the dst1-1 mutation. Dst1 is predicted to be a protein of 1175 amino acids that contains two PAS domains, a coiled-coil structure, and a putative, glutamine-rich, transcriptional activation domain (AD). One of the PAS domains exhibits significant similarity to the LOV domains of known blue-light receptors, suggesting that Dst1 is a blue-light receptor of C. cinereus. The dst1-1 mutation is predicted to truncate the putative AD in the C-terminal region.
Genetics – Oxford University Press
Published: Sep 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.