Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Weigert, J. Roberts (1972)
Nuclear magnetic resonance spectroscopy. Carbon-carbon coupling.Journal of the American Chemical Society, 94 17
R. Lynden-Bell, J. Bulsing, D. Doddrell (1983)
A vector description of multiple-quantum coherence in AXn spin systemsJournal of Magnetic Resonance, 55
A. Neszmélyi, W. Hull, G. Lukács (1982)
Natural abundance 13C13C coupling constants observed via double quantum coherence. The two-dimensional ‘inadequate’ experiment for 13C NMR spectral analysis of erythronolide - BTetrahedron Letters, 23
J. Buddrus, H. Bauer, H. Gotthardt, R. Jung (1983)
Structure Determination by 13C-NMR Spectroscopy Using an INADEQUATE Pulse Sequence: Differentiation of Heteroatom- Substituted Organic Constitutional Isomers by means of 13C-13C Coupling Constants†Angewandte Chemie, 22
P. Hansen, A. Lyčka (1986)
Carbon–carbon coupling constants of 1‐phenylazo‐2‐naphthol and 2‐phenylazo‐1‐naphthol obtained by the SEMINA‐1 techniqueMagnetic Resonance in Chemistry, 24
Michael Stöcker (1982)
Der Einfluß von Hydroxylgruppen auf die Größe der13C,13C-KopplungskonstantenMonatshefte für Chemie / Chemical Monthly, 113
K. Frei, H. Bernstein (1963)
Carbon—Carbon Spin‐Coupling Constants in Characteristic CC‐Bond TypesJournal of Chemical Physics, 38
G. Mueller, J. Schmiedl, Erich Schneider, R. Sedlmeier, G. Woerner, A. Scott, H. Williams, P. Santander, N. Stolowich (1986)
Structure of factor S3, a metabolite of Propionibacterium shermanii derived from uroporphyrinogen IJournal of the American Chemical Society, 108
H. Seto, Tsutomu Sato, H. Yonehara (1973)
Utilization of carbon-13 carbon-13 coupling in structural and biosynthetic studies. Alternate double labeling methodJournal of the American Chemical Society, 95
P. Hansen (1981)
Carbon–Carbon Coupling Constants: DiscussionAnnual reports on NMR spectroscopy, 11
G. Schenck, W. Hartmann, Sven‐Peter Mannsfeld, W. Metzner, C. Krauch (1962)
Vierringsynthesen durch photosensibilisierte symmetrische und gemischte Cyclo‐AdditionenChemische Berichte, 95
V. Krishnamurthy, G. Prakash, P. Iyer, G. Olah (1985)
Stable carbocations. 264. Observation of secondary carbon-13 equilibrium isotope effect in the degenerate rearrangement of 2,3-dimethyl-2-butyl cation using natural abundance carbon-13 NMR spectroscopyJournal of the American Chemical Society, 107
C. Kruk, A. Jans, J. Lugtenburg (1985)
Two‐dimensional INADEQUATE 13C NMR Study on Vitamin D3Magnetic Resonance in Chemistry, 23
S. Berger, K. Zeller (1984)
A 13C13C spin-spin coupling matrix for azuleneJournal of Organic Chemistry, 49
C. Brevard, R. Schimpf, G. Tourné, C. Tourné (1983)
Tungsten-183 NMR: a complete and unequivocal assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional tungsten-183 NMR techniquesJournal of the American Chemical Society, 105
W. Ammann, R. Richarz, T. Wirthlin, D. Wendisch (1982)
1H and 13C chemical shifts and coupling constants of lupane. Application of two‐dimensional NMR techniquesMagnetic Resonance in Chemistry, 20
P. Schmitt, H. Günther (1983)
Assignment of 13C resonances and 13C,X spin-spin coupling constants via double-quantum coherenceJournal of Magnetic Resonance, 52
A. Ragauskas, J. Stothers (1985)
13C nuclear magnetic resonance studies. 114. An examination of the [3.3.1.0] → [4.3.0.0] rearrangement via β-enolization and H/D exchange in tricyclic ketonesCanadian Journal of Chemistry, 63
C. Gorst-Allman, K. Pachler, P. Steyn, P. Wessels, D. Scott (1977)
Carbon-13 nuclear magnetic resonance assignments of some fungal C20 anthraquinones; their biosynthesis in relation to that of aflatoxin B1Journal of The Chemical Society-perkin Transactions 1, 9
M. Lee, D. Repeta, K. Nakanishi, M. Zagorski (1986)
Biosynthetic origins and assignments of carbon 13 NMR peaks of brevetoxin B.Journal of the American Chemical Society, 108 24
A. Bax, T. Mareci (1983)
Practical Aspects of Carbon-13 Double Quantum NMRJournal of Magnetic Resonance, 53
P. Joseph-Nathan, R. Santillán, P. Schmitt, H. Günther (1984)
The study of longifolene by two‐dimensional NMR spectroscopyMagnetic Resonance in Chemistry, 22
U. Sørensen, H. Jakobsen, O. Sørensen (1985)
Pulse sequence SEMINA-2 for spectral editing of 13C13C couplings observed via double-quantum coherenceJournal of Magnetic Resonance, 61
K. Kamieńska‐Trela, Z. Biedrzycka, R. Machinek, B. Knieriem, W. Lüttke (1984)
Substituent effects on nuclear spin–spin carbon–carbon coupling constants in derivatives of acetyleneMagnetic Resonance in Chemistry, 22
S. Schäublin, A. Höhener, R. Ernst (1974)
Fourier spectroscopy of nonequilibrium states, application to CIDNP, overhauser experiments and relaxation time measurementsJournal of Magnetic Resonance, 13
M. Musmar, M. Willcott, G. Martin, R. Gampe, M. Iwao, Milton Lee, R. Hurd, L. Johnson, R. Castle (1983)
Autocorrelated 13C-13C double quantum coherence two-dimensional NMR spectroscopy: utilization of a modified version of the technique as an adjunct in the total assignment of the 1H- and 13C-NMR spectra of the mutagen phenanthro[3,4-b]thiopheneJournal of Heterocyclic Chemistry, 20
D. Piveteau, M. Delsuc, E. Guittet, J. Lallemand (1985)
Improvement of the two‐dimensional INADEQUATE technique by a ‘double selection’ experimentMagnetic Resonance in Chemistry, 23
R. Benn, H. Günther (1983)
Modern Pulse Methods in High‐Resolution NMR SpectroscopyAngewandte Chemie, 22
W. Metzner, D. Wendisch (1969)
Photodimerisation von IndenEuropean Journal of Organic Chemistry, 730
O. Sørensen, U. Sørensen, H. Jakobsen (1984)
SEMUT editing of inadequate 13C NMR spectraJournal of Magnetic Resonance, 59
H. Kessler, M. Bernd, H. Kogler, J. Zarbock, O. Soerensen, G. Bodenhausen, R. Ernst (1983)
Peptide conformations. 28. Relayed heteronuclear correlation spectroscopy and conformational analysis of cyclic hexapeptides containing the active sequence of somatostatinJournal of the American Chemical Society, 105
P. Keller, K. Vogele (1986)
Sensitivity enhancement of INADEQUATE by proton monitoringJournal of Magnetic Resonance, 68
H. Ulrich, D. Rao, F. Stuber, A. Sayigh (1970)
Photodimerization of substituted stilbenesJournal of Organic Chemistry, 35
S. Gould, D. Cane (1982)
The biosynthesis of streptonigrin. 5. Biosynthesis of streptonigrin from [U-13C6]-D-glucose. Origin of the quinoline quinoneChemInform, 13
J. Marshall, Larry Faehl, R. Kattner (1979)
The additivity of NMR carbon–carbon spin–spin coupling constantsMagnetic Resonance in Chemistry, 12
A. Bax, R. Freeman, Stewart Kempsell (1980)
Natural abundance carbon-13-carbon-13 coupling observed via double-quantum coherenceJournal of the American Chemical Society, 102
A. Bain, D. Hughes, J. Coddington, R. Bell (1984)
Selectivity of the multiplet selection via the double-quantum coherence (DOUBTFUL) experimentJournal of Magnetic Resonance, 58
P. Rösch, K. Gross (1984)
Two Dimensional Double-Quantum and COSY Spectra of Porcine Adenylate KinaseZeitschrift für Naturforschung C, 39
S. Sparks, P. Ellis (1985)
DEPT polarization transfer for the INADEQUATE experimentJournal of Magnetic Resonance, 62
A. Mcinnes, Jeffrey Wright (1975)
Use of carbon-13 magnetic resonance spectroscopy for biosynthetic investigationsAccounts of Chemical Research, 8
P. Keller, Q. Van, A. Bacher, H. Floss (1983)
Biosynthesis of riboflavin : 13C-NMR techniques for the analysis of multiply 13C-labeled riboflavinsTetrahedron, 39
W. Aue, E. Bartholdi, R. Ernst (1976)
Two‐dimensional spectroscopy. Application to nuclear magnetic resonanceJournal of Chemical Physics, 64
L. Muller, A. Pardi (1985)
Uncovering remote nuclear-spin connectivities by relayed zero and double quantum coherenceJournal of the American Chemical Society, 107
G. Carter, A. Fantini, J. James, D. Borders, Richard White (1984)
Biosynthesis of ravidomycin. Use of 13C-13C double quantum NMR to follow precursor incorporationTetrahedron Letters, 25
P. Domaille (1984)
The 1- and 2-dimensional tungsten-183 and vanadium-51 NMR characterization of isopolymetalates and heteropolymetalatesJournal of the American Chemical Society, 106
A. Bax, R. Freeman (1980)
Investigation of 13C13C couplings in natural abundance samples: The strong coupling caseJournal of Magnetic Resonance, 41
T. Tsunoda, Y. Kabasawa, S. Ito, M. Kodama (1984)
Total synthesis of “(±)-senoxydene”Tetrahedron Letters, 25
H. Gais, K. Lukas (1984)
Enantioselective and Enantioconvergent Syntheses of Building Blocks for the Total Synthesis of Cyclopentanoid Natural ProductsAngewandte Chemie, 23
Â. Pinto, Susan Prado, R. Filho, W. Hull, A. Neszmélyi, G. Lukács (1982)
Natural abundance 13C - 13C coupling constants observed via double quantum coherence. Structural elucidation by the one- and the two-dimensional NMR experiements of velloziolone, a new seco-diterpene.Tetrahedron Letters, 23
A. Neszmélyi, G. Lukács (1982)
Natural-abundance one-bond carbon-13-carbon-13 coupling constants in monosaccharide derivatives and in sucroseJournal of the American Chemical Society, 104
V. Wray (1979)
Carbon-carbon coupling constants: A compilation of data and a practical guideProgress in Nuclear Magnetic Resonance Spectroscopy, 13
S. Ōmura, A. Nakagawa, Yoshitake Tanaka (1982)
STRUCTURE OF A NEW ANTIFUNGAL ANTIBIOTIC, IRUMAMYCINChemInform, 14
H. Gotthardt, Hans‐Georg Kinzelmann, Ulrich Feist, J. Buddrus (1986)
Zur Regio- und Stereoselektivität neuer thermischer [3 + 2]-Cycloadditionen mesoionischer 1,3-Oxathiol-4-one an Alkine und AlkeneChemische Berichte, 119
F. Bohlmann, C. Zdero (1979)
Senoxyden, ein neuer sesquiterpen-kohlenwasserstoff aus Senecio oxyodontus☆Phytochemistry, 18
A. Bax, R. Freeman, T. Frenkiel (1981)
An NMR technique for tracing out the carbon skeleton of an organic moleculeJournal of the American Chemical Society, 103
A. Bax, R. Freeman, T. Frenkiel, M. Levitt (1981)
Assignment of carbon-13 NMR spectra via double-quantum coherenceJournal of Magnetic Resonance, 43
W. Ayer, Sing Lee, T. Nakashima (1979)
Metabolites of bird's nest fungi. Part 12. Studies on the biosynthesis of the cyathinsCanadian Journal of Chemistry, 57
D. Turner (1982)
Carbon-13 autocorrelation NMR using double-quantum coherenceJournal of Magnetic Resonance, 49
N. Bhacca, M. Balandrin, A. Kinghorn, T. Frenkiel, R. Freeman, G. Morris (1983)
C-13 AND PROTON TWO-DIMENSIONAL NMR-STUDY OF THE ORMOSIA ALKALOIDS PANAMINE, ORMOSANINE, AND ORMOSININEJournal of the American Chemical Society, 105
R. Benn (1983)
Editing of 13C13C satellite spectra via CH couplingsJournal of Magnetic Resonance, 55
N. Bhacca, M. Balandrin, A. Kinghorn, T. Frenkiel, R. Freeman, G. Morris (1983)
CARBON-13 AND PROTON TWO-DIMENSIONAL NMR STUDY OF THE ORMOSIA ALKALOIDS PANAMINE, ORMOSANINE, AND ORMOSININEChemInform, 14
D. Turner (1981)
Determination of molecular structure by carbon-13 autocorrelation N.M.R.Molecular Physics, 44
H. Gotthardt, R. Jung (1985)
Zur Positions- und Regioselektivität neuer [3+2]-Cycloadditionen mesoionischer 1,3-Dithiol-4-one an elektronenarme und elektronenreiche ButatrieneChemische Berichte, 118
G. Hawkes, Robert Smith, John Roberts (1974)
Nuclear magnetic resonance spectroscopy. Carbon-13 chemical shifts of chlorinated organic compoundsJournal of Organic Chemistry, 39
H. Ziffer, J. Williams (1968)
Citraconic anhydride photodimer. Structure and stereochemistryJournal of Organic Chemistry, 33
G. Buchbauer, A. Fischlmayr, E. Haslinger, W. Robien, H. Völlenkle, C. Wassmann (1984)
2D-NMR: Part VI. 2D-INADEQUATE spectral analysis and crystal structure of tricyclo[7.3.1.02,7]tridecaneMonatshefte für Chemie - Chemical Monthly, 115
L. Braunschweiler, G. Bodenhausen, R. Ernst (1983)
Analysis of networks of coupled spins by multiple quantum N.M.R.Molecular Physics, 48
C. Unkefer, W. Earl (1985)
A combination of inadequate and carbon-13 saturation for spectral implificationJournal of Magnetic Resonance, 61
S. Fesik, T. Perun, Alford Thomas (1985)
1H Assignments of glycopeptide antibiotics by double quantum NMR and relayed correlation spectroscopyMagnetic Resonance in Chemistry, 23
D. Turner (1984)
Sensitivity of two-dimensional NMR spectroscopyJournal of Magnetic Resonance, 58
F. Schmitz, S. Agarwal, S. Gunasekera, P. Schmidt, J. Shoolery (1983)
Amphimedine, new aromatic alkaloid from a pacific sponge, Amphimedon sp. Carbon connectivity determination from natural abundance carbon-13-carbon-13 coupling constantsJournal of the American Chemical Society, 105
R. Little, K. Stone (1983)
Asymmetric induction in the intramolecular 1,3-diyl trapping reaction. Chirality on the linking chainJournal of the American Chemical Society, 105
L. Müller (1984)
Mapping of spin-spin coupling via zero-quantum coherenceJournal of Magnetic Resonance, 59
T. Mareci, R. Freeman (1982)
Echoes and antiechoes in coherence transfer NMR: Determining the signs of double-quantum frequenciesJournal of Magnetic Resonance, 48
V. Krishnamurthy, J. Shih, G. Olah (1985)
The structure of tetrahydrobinor-S (pentacyclo[8.4.0.02,6.03,8.09,13]tetradecane) based on carbon-carbon connectivity two-dimensional NMR studyJournal of Organic Chemistry, 50
S. Johns, R. Willing (1985)
13C chemical shift and 13C, 13C coupling constant assignment of quaternary carbons by double quantum coherence. Use of the DOUBTFUL pulse sequence in natural abundance 13C NMR spectraMagnetic Resonance in Chemistry, 23
O. Sørensen, G. Eich, M. Levitt, G. Bodenhausen, R. Ernst (1984)
Product operator formalism for the description of NMR pulse experimentsProgress in Nuclear Magnetic Resonance Spectroscopy, 16
W. Kreiser, V. Rüschenbaum, H. Bauer, J. Buddrus (1984)
Gerüstumlagerung eines α,β-ungesättigten γ,δ-Epoxiketons bei der Birch-Reduktion: Strukturaufklärung mittels 13C-INADEQUATE-NMR-SpektroskopieHelvetica Chimica Acta, 67
S. Carmely, Y. Kashman (1986)
Neviotine-A, a new triterpene from the red sea sponge Siphonochalina siphonellaJournal of Organic Chemistry, 51
H. Bauer, J. Buddrus, W. Heyde, W. Kimpenhaus (1986)
Konstitutionsermittlung hochchlorierter organischer Verbindungen durch INADEQUATE-13C-KernresonanzspektroskopieChemische Berichte, 119
D. Turner (1983)
Spectral assignment by carbon-13 autocorrelation spectroscopyJournal of Magnetic Resonance, 53
M. Klessinger, H. Megen, K. Wilhelm (1982)
Der Mehrwegemechanismus bei 13C‐13C‐Fernkopplungskonstanten cyclischer KohlenwasserstoffeChemische Berichte, 115
D. Welti (1985)
Revision of the 13C NMR signal assignment of harman, based on one‐ and two‐dimensional INADEQUATE spectroscopyMagnetic Resonance in Chemistry, 23
H. Bauer, J. Buddrus, W. Heyde, W. Kimpenhaus (1985)
Vortäuschung von CC-Bindungen durch ungewöhnlich große 2JCC-Werte – ein Problem bei der Anwendung der INADEQUATE-13C-NMR-Spektroskopie†‡Angewandte Chemie, 97
R. Horak, P. Steyn, R. Vleggaar (1985)
Carbon—carbon coupling constants derived from biosynthetic studiesMagnetic Resonance in Chemistry, 23
Richard Moore, G. Bigam, J. Chan, A. Hogg, T. Nakashima, J. Vederas (1985)
Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin of carbon, hydrogen, and oxygen atoms by carbon-13 NMR and mass spectrometryJournal of the American Chemical Society, 107
P. Hore, E. Zuiderweg, K. Nicolay, K. Dijkstra, R. Kaptein (1982)
Multiplet selection in crowded 1H NMR spectra via double quantum coherenceJournal of the American Chemical Society, 104
F. Bohlmann, Ngo Van, J. Pickardt (1977)
Natürlich vorkommende Terpen‐Derivate, 108. Über ein anomales Sesquiterpen aus Berkheya radula (Harv.) De WilldChemische Berichte, 110
P. Bolton (1986)
Enhancement of two-dimensional spectra such as INADEQUATE by application of symmetry rulesJournal of Magnetic Resonance, 68
T. Mareci, R. Freeman (1983)
Mapping proton-proton coupling via double-quantum coherenceJournal of Magnetic Resonance, 51
M. Ubukata, J. Uzawa, K. Isono (1984)
Biosynthesis of cationomycin: direct and indirect incorporation of 13C-acetate and application of homoscalar correlated 2-D carbon-13 NMR and double quantum coherenceJournal of the American Chemical Society, 106
P. Hore, E. Zuiderweg, K. Nicolay, K. Dijkstra, R. Kaptein (1982)
MULTIPLET SELECTION IN CROWDED PROTON NMR SPECTRA VIA DOUBLE QUANTUM COHERENCEChemInform, 13
R. Richarz, W. Ammann, T. Wirthlin (1981)
Computer-assisted determination of carbon connectivity patterns in organic molecules from natural-abundance 1JCC dataJournal of Magnetic Resonance, 45
H. Kessler, C. Griesinger, J. Lautz (1984)
Determination of Connectivities via Small Proton‐Carbon Couplings with a New Two‐Dimensional NMR TechniqueAngewandte Chemie, 23
S. Rajan, H. Tsou, P. Mowery, M. Bullock, G. Stockton (1984)
Natural abundance two-dimensional double-quantum 13C NMR spectroscopy of maduramicin, a polyether ionophore antibiotic and coccidiostat.The Journal of antibiotics, 37 11
H. Kessler, W. Bermel, C. Griesinger (1985)
Determination of carbon-carbon connectivities, assignment of quaternary carbons, and extraction of carbon-carbon coupling constants by carbon-relayed hydrogen-carbon spectroscopyJournal of Magnetic Resonance, 62
G. Eich, G. Bodenhausen, R. Ernst (1982)
Exploring nuclear spin systems by relayed magnetization transferJournal of the American Chemical Society, 104
S. Berger (1984)
A 13C13C spin–spin coupling matrix for 1- and 2-methylnaphthalene by the two-dimensional INADEQUATE method. Correlation with π-bond ordersMagnetic Resonance in Chemistry, 22
S. Patt, F. Sauriol, A. Perlin (1982)
Determination of the positions of glycosidic linkages from 13C13C connectivity plotsCarbohydrate Research, 107
O. Sørensen, R. Freeman, T. Frenkiel, T. Mareci, Regina Schuck (1982)
Observation of 13C13C couplings with enhanced sensitivityJournal of Magnetic Resonance, 46
T. Kikuchi, S. Kadota, S. Matsuda, Hisashi Suehara (1984)
Structure and C-13 signal assignments of new methylsterols from nervilia purpurea by two-dimensional NMR spectroscopyTetrahedron Letters, 25
D. Doddrell, W. Brooks, J. Field (1983)
Selective polarization transfer in homonuclear coupled spin systems. A possible one-dimensional multipulse technique for deducing CC connectivitiesJournal of Magnetic Resonance, 55
H. Bauer, J. Buddrus, W. Heide, W. Kimpenhaus (1985)
Misinterpretation of CC Bonding through Unusually Large 2JCC Values—a Caveat for the Use of INADEQUATE‐13C‐NMR SpectroscopyAngewandte Chemie, 24
H. O. Kalinowski, S. Berger, S. Braun (1984)
13C‐NMR‐Spektroskopie
H. Ziffer, I. Levin (1969)
Determining centrosymmetric dimers by infrared and Raman spectroscopy.The Journal of organic chemistry, 34 12
R. Komoroski, E. Gregg, J. Shockcor, J. Geckle (1986)
Identification of guayule triterpenes by two‐dimensional and multipulse NMR techniquesMagnetic Resonance in Chemistry, 24
G. Martin, R. Sanduja, Maktoob Alam (1985)
TWO‐DIMENSIONAL NMR STUDIES OF MARINE NATURAL PRODUCTS. 2. UTILIZATION OF TWO‐DIMENSIONAL PROTON DOUBLE QUANTUM COHERENCE NMR SPECTROSCOPY IN NATURAL PRODUCTS STRUCTURE ELUCIDATION ON ‐ DETERMINATION OF LONG‐RANGE COUPLINGS IN PLUMERICINChemInform, 16
E. Guittet, J. Lallemand, C. Lapierre, B. Monties (1985)
Applicability of the 13C NMR “inadequate” experiment to lignin, a natural polymer.Tetrahedron Letters, 26
H. Kessler, W. Bermel, C. Griesinger, P. Hertl, E. Streich, A. Rieker (1986)
Assignments of the carbon resonances in tert-butylated 2-naphthols by the two-dimensional carbon-relayed hydrogen,carbon-COSY techniqueJournal of Organic Chemistry, 51
P. Bolton, G. Bodenhausen (1982)
Relayed coherence transfer spectroscopy of heteronuclear systems: detection of remote nuclei in NMRChemical Physics Letters, 89
H. Kessler, C. Griesinger, Jörg Lautz (1984)
Bestimmung von Konnektivitäten über kleine Protonen‐Kohlenstoff‐Kopplungen mit einer neuen zweidimensionalen NMR‐TechnikAngewandte Chemie, 96
H. Kessler, C. Griesinger, J. Zarbock, H. Loosli (1984)
Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t1 (COLOC)Journal of Magnetic Resonance, 57
A. Wokaun, R. Ernst (1977)
Selective detection of multiple quantum transitions in NMR by two-dimensional spectroscopyChemical Physics Letters, 52
G. Bodenhausen (1980)
Multiple-quantum NMRProgress in Nuclear Magnetic Resonance Spectroscopy, 14
M. Levitt, R. Ernst (1983)
Improvement of pulse performance in N.M.R. coherence transfer experimentsMolecular Physics, 50
J. McChesney, E. Silveira, A. Craveiro, J. Shoolery (1984)
The use of carbon-carbon connectivity in the structure determination of marmelerin, a novel benzofuran sesquiterpene from Croton sonderianusJournal of Organic Chemistry, 49
V. Wray, P. Hansen (1981)
Carbon–Carbon Coupling Constants: DataAnnual reports on NMR spectroscopy, 11
V. Krishnamurthy, P. Iyer, G. Olah (1983)
Study of substituent effects on one-bond 13C-13C NMR coupling constants in adamantane derivativesJournal of Organic Chemistry, 48
P. Hansen, O. Poulsen, A. Berg (1979)
13C, 13C coupling constants in phenyl substituted ethylene, naphthalene, phenanthrene and cyclopentadienone. Dependence on dihedral angles. Determination of signs by the symmetrical double labelling (SDL) method. IVMagnetic Resonance in Chemistry, 12
K. Schenker, W. Philipsborn (1986)
Off-resonance effects and their compensation in the multiple-pulse sequences INEPT, DEPT, and INADEQUATEJournal of Magnetic Resonance, 66
T. Nishida, C. Enzell, G. Morris (1986)
Concerted use of homo‐ and hetero‐nuclear 2D NMR: 13C and 1H assignment of sucrose octaacetateMagnetic Resonance in Chemistry, 24
A. Maudsley, R. Ernst (1977)
Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopyChemical Physics Letters, 50
T. Loerzer, R. Machinek, W. Lüttke, L. Franz, K. Malsch, G. Maier (1983)
Tetra‐tert‐butyltetrahedrane: 13C‐13C Coupling Constants and HybridizationAngewandte Chemie, 22
H. Gais, K. Lukas (1984)
Enantioselektive und enantiokonvergente Synthese von Bausteinen zur Totalsynthese cyclopentanoider NaturstoffeAngewandte Chemie, 96
R. Freeman, T. Frenkiel, M. Rubin (1983)
STRUCTURE OF A PHOTODIMER DETERMINED BY NATURAL‐ABUNDANCE 13C‐13C COUPLINGChemInform, 14
E. Guittet, S. Julia, G. Linstrumelle, R. Lorne (1984)
Unusual transformations of the chrysanthemic nitrile skeleton by sodium hydride in n,n-dimethylformamideTetrahedron, 40
V. Jäger, W. Kuhn, J. Buddrus (1986)
Cationic cyclization of linalyl- and geranyl/nerylacetic acid. A facile entry to the brexane systemTetrahedron Letters, 27
R. Ernst, R. Morgan (1973)
Saturation effects in Fourier spectroscopyMolecular Physics, 26
Bei der Aufklärung der Struktur organischer Verbindungen spielt die NMR‐Spektroskopie eine bedeutende Rolle. Wichtige Parameter sind dabei die chemischen Verschiebungen der 1H‐ und 13C‐Kerne und die Spin‐Spin‐Kopplungen zwischen 1H‐Kernen sowie zwischen 1H‐ und 13C‐Kernen. Kopplungen zwischen 13C‐Kernen wurden bis vor wenigen Jahren kaum beachtet, weil sie aufgrund der geringen natürlichen Häufigkeit von 13C nur schwer zu beobachten waren. Gerade diese Kopplungen geben aber direkte Hinweise auf die Verknüpfungen im Kohlenstoffgerüst. Durch eine spezielle Pulsfolge in der NMR‐Spektroskopie lassen sich diese Kopplungen jetzt besser sichtbar machen. Man erhält 13C‐NMR‐Spektren, aus denen das jeweilige Kohlenstoffgerüst direkt abgelesen werden kann. Insbesondere zweidimensionale Spektren sind sehr einfach zu interpretieren. Die Pulsfolge hört auf den Namen INADEQUATE, sie erzeugt Doppelquanten‐Kohärenzen, aus denen schließlich die NMR‐Signale der koppelnden 13C‐Kerne hervorgehen. Dieser Beitrag erläutert das Prinzip der Doppelquanten‐Kohärenz, bringt zahlreiche Anwendungsbeispiele aus dem Repertoire des präparativ orientierten Organikers und aus dem des Naturstoffchemikers, einige Beispiele aus dem Gebiet der Biosynthese und weist auf die Möglichkeit hin, auch andere Kerne als 13C mit INADEQUATE‐NMR‐Spektroskopie zu untersuchen.
Angewandte Chemie – Wiley
Published: Jan 1, 1987
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.