Access the full text.
Sign up today, get DeepDyve free for 14 days.
Robert Edgar (2004)
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic acids research, 32 5
( Feske S , Wulff H , Skolnik EY . Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291‐353. 10.1146/annurev-immunol-032414-112212.25861976)
Feske S , Wulff H , Skolnik EY . Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291‐353. 10.1146/annurev-immunol-032414-112212.25861976Feske S , Wulff H , Skolnik EY . Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291‐353. 10.1146/annurev-immunol-032414-112212.25861976, Feske S , Wulff H , Skolnik EY . Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291‐353. 10.1146/annurev-immunol-032414-112212.25861976
( Yin L , Maddison LA , Li M , et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics. 2015;200(2):431‐441. 10.1534/genetics.115.176917.25855067)
Yin L , Maddison LA , Li M , et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics. 2015;200(2):431‐441. 10.1534/genetics.115.176917.25855067Yin L , Maddison LA , Li M , et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics. 2015;200(2):431‐441. 10.1534/genetics.115.176917.25855067, Yin L , Maddison LA , Li M , et al. Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. Genetics. 2015;200(2):431‐441. 10.1534/genetics.115.176917.25855067
Y. Peer, Steven Maere, A. Meyer (2009)
The evolutionary significance of ancient genome duplicationsNature Reviews Genetics, 10
( Ravi V , Venkatesh B . The divergent genomes of teleosts. Annu Rev Anim Biosci. 2018;6:47‐68. 10.1146/annurev-animal-030117-014821.29447475)
Ravi V , Venkatesh B . The divergent genomes of teleosts. Annu Rev Anim Biosci. 2018;6:47‐68. 10.1146/annurev-animal-030117-014821.29447475Ravi V , Venkatesh B . The divergent genomes of teleosts. Annu Rev Anim Biosci. 2018;6:47‐68. 10.1146/annurev-animal-030117-014821.29447475, Ravi V , Venkatesh B . The divergent genomes of teleosts. Annu Rev Anim Biosci. 2018;6:47‐68. 10.1146/annurev-animal-030117-014821.29447475
( Bailey CS , Moldenhauer HJ , Park SM , Keros S , Meredith AL . KCNMA1‐linked channelopathy. J Gen Physiol. 2019;151(10):1173‐1189. 10.1085/jgp.201912457.31427379)
Bailey CS , Moldenhauer HJ , Park SM , Keros S , Meredith AL . KCNMA1‐linked channelopathy. J Gen Physiol. 2019;151(10):1173‐1189. 10.1085/jgp.201912457.31427379Bailey CS , Moldenhauer HJ , Park SM , Keros S , Meredith AL . KCNMA1‐linked channelopathy. J Gen Physiol. 2019;151(10):1173‐1189. 10.1085/jgp.201912457.31427379, Bailey CS , Moldenhauer HJ , Park SM , Keros S , Meredith AL . KCNMA1‐linked channelopathy. J Gen Physiol. 2019;151(10):1173‐1189. 10.1085/jgp.201912457.31427379
( Salkoff L , Butler A , Ferreira G , Santi C , Wei A . High‐conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7(12):921‐931. 10.1038/nrn1992.17115074)
Salkoff L , Butler A , Ferreira G , Santi C , Wei A . High‐conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7(12):921‐931. 10.1038/nrn1992.17115074Salkoff L , Butler A , Ferreira G , Santi C , Wei A . High‐conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7(12):921‐931. 10.1038/nrn1992.17115074, Salkoff L , Butler A , Ferreira G , Santi C , Wei A . High‐conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7(12):921‐931. 10.1038/nrn1992.17115074
( Hensley MR , Chua RF , Leung YF , Yang JY , Zhang G . Molecular evolution of MDM1, a "Duplication‐Resistant" gene in vertebrates. PLoS One. 2016;11(9):e0163229. 10.1371/journal.pone.0163229.27658201)
Hensley MR , Chua RF , Leung YF , Yang JY , Zhang G . Molecular evolution of MDM1, a "Duplication‐Resistant" gene in vertebrates. PLoS One. 2016;11(9):e0163229. 10.1371/journal.pone.0163229.27658201Hensley MR , Chua RF , Leung YF , Yang JY , Zhang G . Molecular evolution of MDM1, a "Duplication‐Resistant" gene in vertebrates. PLoS One. 2016;11(9):e0163229. 10.1371/journal.pone.0163229.27658201, Hensley MR , Chua RF , Leung YF , Yang JY , Zhang G . Molecular evolution of MDM1, a "Duplication‐Resistant" gene in vertebrates. PLoS One. 2016;11(9):e0163229. 10.1371/journal.pone.0163229.27658201
( Zhang G , Cohn MJ . Hagfish and lancelet fibrillar collagens reveal that type II collagen‐based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A. 2006;103(45):16829‐16833. 10.1073/pnas.0605630103.17077149)
Zhang G , Cohn MJ . Hagfish and lancelet fibrillar collagens reveal that type II collagen‐based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A. 2006;103(45):16829‐16833. 10.1073/pnas.0605630103.17077149Zhang G , Cohn MJ . Hagfish and lancelet fibrillar collagens reveal that type II collagen‐based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A. 2006;103(45):16829‐16833. 10.1073/pnas.0605630103.17077149, Zhang G , Cohn MJ . Hagfish and lancelet fibrillar collagens reveal that type II collagen‐based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A. 2006;103(45):16829‐16833. 10.1073/pnas.0605630103.17077149
W. Joiner, Lu-Yang Wang, M. Tang, L. Kaczmarek (1997)
hSK4, a member of a novel subfamily of calcium-activated potassium channels.Proceedings of the National Academy of Sciences of the United States of America, 94 20
Guangjun Zhang, M. Miyamoto, M. Cohn (2006)
Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton.Proceedings of the National Academy of Sciences of the United States of America, 103 9
R. Cabo, R. Zichichi, E. Viña, M. Guerrera, G. Vázquez, O. García-Suárez, J. Vega, A. Germanà (2013)
Calcium-activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafishNeuroscience Letters, 555
F. Brunet, H. Crollius, Mathilde Paris, J. Aury, P. Gibert, O. Jaillon, V. Laudet, M. Robinson-Rechavi (2006)
Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.Molecular biology and evolution, 23 9
( Kaczmarek LK , Aldrich RW , Chandy KG , Grissmer S , Wei AD , Wulff H . International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium‐activated and sodium‐activated potassium channels. Pharmacol Rev. 2017;69(1):1‐11. 10.1124/pr.116.012864.28267675)
Kaczmarek LK , Aldrich RW , Chandy KG , Grissmer S , Wei AD , Wulff H . International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium‐activated and sodium‐activated potassium channels. Pharmacol Rev. 2017;69(1):1‐11. 10.1124/pr.116.012864.28267675Kaczmarek LK , Aldrich RW , Chandy KG , Grissmer S , Wei AD , Wulff H . International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium‐activated and sodium‐activated potassium channels. Pharmacol Rev. 2017;69(1):1‐11. 10.1124/pr.116.012864.28267675, Kaczmarek LK , Aldrich RW , Chandy KG , Grissmer S , Wei AD , Wulff H . International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium‐activated and sodium‐activated potassium channels. Pharmacol Rev. 2017;69(1):1‐11. 10.1124/pr.116.012864.28267675
G. Wagner, C. Amemiya, F. Ruddle (2003)
Hox cluster duplications and the opportunity for evolutionary noveltiesProceedings of the National Academy of Sciences of the United States of America, 100
( Ablain J , Durand EM , Yang S , Zhou Y , Zon LIA . CRISPR/Cas9 vector system for tissue‐specific gene disruption in zebrafish. Dev Cell. 2015;32(6):756‐764. 10.1016/j.devcel.2015.01.032.25752963)
Ablain J , Durand EM , Yang S , Zhou Y , Zon LIA . CRISPR/Cas9 vector system for tissue‐specific gene disruption in zebrafish. Dev Cell. 2015;32(6):756‐764. 10.1016/j.devcel.2015.01.032.25752963Ablain J , Durand EM , Yang S , Zhou Y , Zon LIA . CRISPR/Cas9 vector system for tissue‐specific gene disruption in zebrafish. Dev Cell. 2015;32(6):756‐764. 10.1016/j.devcel.2015.01.032.25752963, Ablain J , Durand EM , Yang S , Zhou Y , Zon LIA . CRISPR/Cas9 vector system for tissue‐specific gene disruption in zebrafish. Dev Cell. 2015;32(6):756‐764. 10.1016/j.devcel.2015.01.032.25752963
( Kim BH , Zhang G . Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs. G3 (Bethesda). 2020;10(3):1029‐1037. 10.1534/g3.119.401035.31915253)
Kim BH , Zhang G . Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs. G3 (Bethesda). 2020;10(3):1029‐1037. 10.1534/g3.119.401035.31915253Kim BH , Zhang G . Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs. G3 (Bethesda). 2020;10(3):1029‐1037. 10.1534/g3.119.401035.31915253, Kim BH , Zhang G . Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs. G3 (Bethesda). 2020;10(3):1029‐1037. 10.1534/g3.119.401035.31915253
( Felsenstein J . Inferring Phylogenies. Sunderland: Sinauer; 2004.)
Felsenstein J . Inferring Phylogenies. Sunderland: Sinauer; 2004.Felsenstein J . Inferring Phylogenies. Sunderland: Sinauer; 2004., Felsenstein J . Inferring Phylogenies. Sunderland: Sinauer; 2004.
M. Westerfield (1995)
The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio)
Y. Atsuta, Reiko Tomizawa, M. Levin, C. Tabin (2019)
L-type voltage-gated Ca2+ channel CaV1.2 regulates chondrogenesis during limb developmentProceedings of the National Academy of Sciences, 116
J. Postlethwait (2007)
The zebrafish genome in context: ohnologs gone missing.Journal of experimental zoology. Part B, Molecular and developmental evolution, 308 5
( Huang X , Jan LY . Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151‐162. 10.1083/jcb.201404136.25049269)
Huang X , Jan LY . Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151‐162. 10.1083/jcb.201404136.25049269Huang X , Jan LY . Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151‐162. 10.1083/jcb.201404136.25049269, Huang X , Jan LY . Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151‐162. 10.1083/jcb.201404136.25049269
(1998)
Calciumactivated potassium channels
I. Woods, P. Kelly, F. Chu, P. Ngo-Hazelett, Y. Yan, H. Huang, J. Postlethwait, W. Talbot (2000)
A comparative map of the zebrafish genome.Genome research, 10 12
( Meyer A , Schartl M . Gene and genome duplications in vertebrates: the one‐to‐four (−to‐eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11(6):699‐704. 10.1016/s0955-0674(99)00039-3.10600714)
Meyer A , Schartl M . Gene and genome duplications in vertebrates: the one‐to‐four (−to‐eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11(6):699‐704. 10.1016/s0955-0674(99)00039-3.10600714Meyer A , Schartl M . Gene and genome duplications in vertebrates: the one‐to‐four (−to‐eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11(6):699‐704. 10.1016/s0955-0674(99)00039-3.10600714, Meyer A , Schartl M . Gene and genome duplications in vertebrates: the one‐to‐four (−to‐eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11(6):699‐704. 10.1016/s0955-0674(99)00039-3.10600714
D. Adams, Sébastien Uzel, J. Akagi, D. Wlodkowic, V. Andreeva, P. Yelick, Adrian Devitt-Lee, J. Paré, M. Levin (2016)
Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2‐associated Andersen–Tawil SyndromeThe Journal of Physiology, 594
J. Postlethwait, I. Woods, P. Ngo-Hazelett, Yi-Lin Yan, P. Kelly, F. Chu, Hui Huang, A. Hill-Force, W. Talbot (2000)
Zebrafish comparative genomics and the origins of vertebrate chromosomes.Genome research, 10 12
A. Force, M. Lynch, F. Pickett, A. Amores, Yi-Lin Yan, J. Postlethwait (1999)
Preservation of duplicate genes by complementary, degenerative mutations.Genetics, 151 4
(2018)
Therapeutic potential of Ca ( 2 + ) activated potassium channels in the nervous system
( Rohmann KN , Tripp JA , Genova RM , Bass AH . Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish. J Exp Biol. 2014;217(14):2531‐2539. 10.1242/jeb.103093.24803460)
Rohmann KN , Tripp JA , Genova RM , Bass AH . Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish. J Exp Biol. 2014;217(14):2531‐2539. 10.1242/jeb.103093.24803460Rohmann KN , Tripp JA , Genova RM , Bass AH . Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish. J Exp Biol. 2014;217(14):2531‐2539. 10.1242/jeb.103093.24803460, Rohmann KN , Tripp JA , Genova RM , Bass AH . Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish. J Exp Biol. 2014;217(14):2531‐2539. 10.1242/jeb.103093.24803460
( Tamura K , Stecher G , Peterson D , Filipski A , Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725‐2729. 10.1093/molbev/mst197.24132122)
Tamura K , Stecher G , Peterson D , Filipski A , Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725‐2729. 10.1093/molbev/mst197.24132122Tamura K , Stecher G , Peterson D , Filipski A , Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725‐2729. 10.1093/molbev/mst197.24132122, Tamura K , Stecher G , Peterson D , Filipski A , Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725‐2729. 10.1093/molbev/mst197.24132122
( McGrath CL , Gout JF , Johri P , Doak TG , Lynch M . Differential retention and divergent resolution of duplicate genes following whole‐genome duplication. Genome Res. 2014;24(10):1665‐1675. 10.1101/gr.173740.114.25085612)
McGrath CL , Gout JF , Johri P , Doak TG , Lynch M . Differential retention and divergent resolution of duplicate genes following whole‐genome duplication. Genome Res. 2014;24(10):1665‐1675. 10.1101/gr.173740.114.25085612McGrath CL , Gout JF , Johri P , Doak TG , Lynch M . Differential retention and divergent resolution of duplicate genes following whole‐genome duplication. Genome Res. 2014;24(10):1665‐1675. 10.1101/gr.173740.114.25085612, McGrath CL , Gout JF , Johri P , Doak TG , Lynch M . Differential retention and divergent resolution of duplicate genes following whole‐genome duplication. Genome Res. 2014;24(10):1665‐1675. 10.1101/gr.173740.114.25085612
Guangjun Zhang, M. Cohn (2007)
Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates.Proceedings of the National Academy of Sciences of the United States of America, 103 45
( Kimmel CB , Ballard WW , Kimmel SR , Ullmann B , Schilling TF . Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253‐310. 10.1002/aja.1002030302.8589427)
Kimmel CB , Ballard WW , Kimmel SR , Ullmann B , Schilling TF . Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253‐310. 10.1002/aja.1002030302.8589427Kimmel CB , Ballard WW , Kimmel SR , Ullmann B , Schilling TF . Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253‐310. 10.1002/aja.1002030302.8589427, Kimmel CB , Ballard WW , Kimmel SR , Ullmann B , Schilling TF . Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253‐310. 10.1002/aja.1002030302.8589427
Brian Kim, Guangjun Zhang (2020)
Generating Stable Knockout Zebrafish Lines by Deleting Large Chromosomal Fragments Using Multiple gRNAsG3: Genes|Genomes|Genetics, 10
Jérémy Pasquier, Cédric Cabau, Thao-vi Nguyen, E. Jouanno, D. Severac, I. Braasch, L. Journot, P. Pontarotti, C. Klopp, J. Postlethwait, Y. Guiguen, J. Bobe (2016)
Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish databaseBMC Genomics, 17
Kevin Rohmann, D. Deitcher, A. Bass (2009)
Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.Molecular biology and evolution, 26 7
( Wagner GP , Lynch VJ . Evolutionary novelties. Curr Biol. 2010;20(2):R48‐R52. 10.1016/j.cub.2009.11.010.20129035)
Wagner GP , Lynch VJ . Evolutionary novelties. Curr Biol. 2010;20(2):R48‐R52. 10.1016/j.cub.2009.11.010.20129035Wagner GP , Lynch VJ . Evolutionary novelties. Curr Biol. 2010;20(2):R48‐R52. 10.1016/j.cub.2009.11.010.20129035, Wagner GP , Lynch VJ . Evolutionary novelties. Curr Biol. 2010;20(2):R48‐R52. 10.1016/j.cub.2009.11.010.20129035
( Westerfield M . The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). 4th ed. Eugene: University of Oregon Press; 2000.)
Westerfield M . The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). 4th ed. Eugene: University of Oregon Press; 2000.Westerfield M . The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). 4th ed. Eugene: University of Oregon Press; 2000., Westerfield M . The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). 4th ed. Eugene: University of Oregon Press; 2000.
T. Ishii, Christopher Silvia, B. Hirschberg, C. Bond, J. Adelman, J. Maylie (1997)
A human intermediate conductance calcium-activated potassium channel.Proceedings of the National Academy of Sciences of the United States of America, 94 21
( Contreras GF , Castillo K , Enrique N , et al. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin). 2013;7(6):442‐458. 10.4161/chan.26242.24025517)
Contreras GF , Castillo K , Enrique N , et al. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin). 2013;7(6):442‐458. 10.4161/chan.26242.24025517Contreras GF , Castillo K , Enrique N , et al. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin). 2013;7(6):442‐458. 10.4161/chan.26242.24025517, Contreras GF , Castillo K , Enrique N , et al. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin). 2013;7(6):442‐458. 10.4161/chan.26242.24025517
( Wolfe K . Robustness—it's not where you think it is. Nat Genet. 2000;25(1):3‐4. 10.1038/75560.10802639)
Wolfe K . Robustness—it's not where you think it is. Nat Genet. 2000;25(1):3‐4. 10.1038/75560.10802639Wolfe K . Robustness—it's not where you think it is. Nat Genet. 2000;25(1):3‐4. 10.1038/75560.10802639, Wolfe K . Robustness—it's not where you think it is. Nat Genet. 2000;25(1):3‐4. 10.1038/75560.10802639
L. Yin, L. Maddison, Mingyu Li, Nergis Kara, M. LaFave, G. Varshney, S. Burgess, J. Patton, Wenbiao Chen (2015)
Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAsGenetics, 200
( Catchen JM , Conery JS , Postlethwait JH . Automated identification of conserved synteny after whole‐genome duplication. Genome Res. 2009;19(8):1497‐1505. 10.1101/gr.090480.108.19465509)
Catchen JM , Conery JS , Postlethwait JH . Automated identification of conserved synteny after whole‐genome duplication. Genome Res. 2009;19(8):1497‐1505. 10.1101/gr.090480.108.19465509Catchen JM , Conery JS , Postlethwait JH . Automated identification of conserved synteny after whole‐genome duplication. Genome Res. 2009;19(8):1497‐1505. 10.1101/gr.090480.108.19465509, Catchen JM , Conery JS , Postlethwait JH . Automated identification of conserved synteny after whole‐genome duplication. Genome Res. 2009;19(8):1497‐1505. 10.1101/gr.090480.108.19465509
G. Wagner, Vincent Lynch (2010)
Evolutionary noveltiesCurrent Biology, 20
( Kohler M , Hirschberg B , Bond CT , et al. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science. 1996;273(5282):1709‐1714. 10.1126/science.273.5282.1709.8781233)
Kohler M , Hirschberg B , Bond CT , et al. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science. 1996;273(5282):1709‐1714. 10.1126/science.273.5282.1709.8781233Kohler M , Hirschberg B , Bond CT , et al. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science. 1996;273(5282):1709‐1714. 10.1126/science.273.5282.1709.8781233, Kohler M , Hirschberg B , Bond CT , et al. Small‐conductance, calcium‐activated potassium channels from mammalian brain. Science. 1996;273(5282):1709‐1714. 10.1126/science.273.5282.1709.8781233
( Joiner WJ , Wang LY , Tang MD , Kaczmarek LK . hSK4, a member of a novel subfamily of calcium‐activated potassium channels. Proc Natl Acad Sci U S A. 1997;94(20):11013‐11018. 10.1073/pnas.94.20.11013.9380751)
Joiner WJ , Wang LY , Tang MD , Kaczmarek LK . hSK4, a member of a novel subfamily of calcium‐activated potassium channels. Proc Natl Acad Sci U S A. 1997;94(20):11013‐11018. 10.1073/pnas.94.20.11013.9380751Joiner WJ , Wang LY , Tang MD , Kaczmarek LK . hSK4, a member of a novel subfamily of calcium‐activated potassium channels. Proc Natl Acad Sci U S A. 1997;94(20):11013‐11018. 10.1073/pnas.94.20.11013.9380751, Joiner WJ , Wang LY , Tang MD , Kaczmarek LK . hSK4, a member of a novel subfamily of calcium‐activated potassium channels. Proc Natl Acad Sci U S A. 1997;94(20):11013‐11018. 10.1073/pnas.94.20.11013.9380751
( Marques CL , Fernandez I , Viegas MN , et al. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci. 2016;73(4):841‐857. 10.1007/s00018-015-2024-x.26341094)
Marques CL , Fernandez I , Viegas MN , et al. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci. 2016;73(4):841‐857. 10.1007/s00018-015-2024-x.26341094Marques CL , Fernandez I , Viegas MN , et al. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci. 2016;73(4):841‐857. 10.1007/s00018-015-2024-x.26341094, Marques CL , Fernandez I , Viegas MN , et al. Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives. Cell Mol Life Sci. 2016;73(4):841‐857. 10.1007/s00018-015-2024-x.26341094
( Dehal P , Boore JL . Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314. 10.1371/journal.pbio.0030314.16128622)
Dehal P , Boore JL . Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314. 10.1371/journal.pbio.0030314.16128622Dehal P , Boore JL . Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314. 10.1371/journal.pbio.0030314.16128622, Dehal P , Boore JL . Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314. 10.1371/journal.pbio.0030314.16128622
K. Wolfe (2000)
Robustness—it's not where you think it isNature Genetics, 25
Giri Dahal, S. Pradhan, E. Bates (2017)
Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp releaseDevelopment, 144
( Pereira J , Johnson WE , O'Brien SJ , et al. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One. 2014;9(12):e74132. 10.1371/journal.pone.0074132.25549322)
Pereira J , Johnson WE , O'Brien SJ , et al. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One. 2014;9(12):e74132. 10.1371/journal.pone.0074132.25549322Pereira J , Johnson WE , O'Brien SJ , et al. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One. 2014;9(12):e74132. 10.1371/journal.pone.0074132.25549322, Pereira J , Johnson WE , O'Brien SJ , et al. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One. 2014;9(12):e74132. 10.1371/journal.pone.0074132.25549322
( Lorin T , Brunet FG , Laudet V , Volff JN . Teleost fish‐specific preferential retention of pigmentation gene‐containing families after whole genome duplications in vertebrates. G3 (Bethesda). 2018;8(5):1795‐1806. 10.1534/g3.118.200201.29599177)
Lorin T , Brunet FG , Laudet V , Volff JN . Teleost fish‐specific preferential retention of pigmentation gene‐containing families after whole genome duplications in vertebrates. G3 (Bethesda). 2018;8(5):1795‐1806. 10.1534/g3.118.200201.29599177Lorin T , Brunet FG , Laudet V , Volff JN . Teleost fish‐specific preferential retention of pigmentation gene‐containing families after whole genome duplications in vertebrates. G3 (Bethesda). 2018;8(5):1795‐1806. 10.1534/g3.118.200201.29599177, Lorin T , Brunet FG , Laudet V , Volff JN . Teleost fish‐specific preferential retention of pigmentation gene‐containing families after whole genome duplications in vertebrates. G3 (Bethesda). 2018;8(5):1795‐1806. 10.1534/g3.118.200201.29599177
( Cabo R , Zichichi R , Vina E , et al. Calcium‐activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish. Neurosci Lett. 2013;555:62‐67. 10.1016/j.neulet.2013.09.026.24060674)
Cabo R , Zichichi R , Vina E , et al. Calcium‐activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish. Neurosci Lett. 2013;555:62‐67. 10.1016/j.neulet.2013.09.026.24060674Cabo R , Zichichi R , Vina E , et al. Calcium‐activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish. Neurosci Lett. 2013;555:62‐67. 10.1016/j.neulet.2013.09.026.24060674, Cabo R , Zichichi R , Vina E , et al. Calcium‐activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish. Neurosci Lett. 2013;555:62‐67. 10.1016/j.neulet.2013.09.026.24060674
( Adams DS , Uzel SGM , Akagi J , et al. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2‐associated Andersen‐Tawil Syndrome. Journal of Physiology‐London. 2016;594(12):3245‐3270. 10.1113/Jp271930.)
Adams DS , Uzel SGM , Akagi J , et al. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2‐associated Andersen‐Tawil Syndrome. Journal of Physiology‐London. 2016;594(12):3245‐3270. 10.1113/Jp271930.Adams DS , Uzel SGM , Akagi J , et al. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2‐associated Andersen‐Tawil Syndrome. Journal of Physiology‐London. 2016;594(12):3245‐3270. 10.1113/Jp271930., Adams DS , Uzel SGM , Akagi J , et al. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2‐associated Andersen‐Tawil Syndrome. Journal of Physiology‐London. 2016;594(12):3245‐3270. 10.1113/Jp271930.
V. Ravi, B. Venkatesh (2018)
The Divergent Genomes of Teleosts.Annual review of animal biosciences, 6
( Dahal GR , Pradhan SJ , Bates EA . Inwardly rectifying potassium channels influenceDrosophilawing morphogenesis by regulating Dpp release. Development. 2017;144(15):2771‐2783. 10.1242/dev.146647.28684627)
Dahal GR , Pradhan SJ , Bates EA . Inwardly rectifying potassium channels influenceDrosophilawing morphogenesis by regulating Dpp release. Development. 2017;144(15):2771‐2783. 10.1242/dev.146647.28684627Dahal GR , Pradhan SJ , Bates EA . Inwardly rectifying potassium channels influenceDrosophilawing morphogenesis by regulating Dpp release. Development. 2017;144(15):2771‐2783. 10.1242/dev.146647.28684627, Dahal GR , Pradhan SJ , Bates EA . Inwardly rectifying potassium channels influenceDrosophilawing morphogenesis by regulating Dpp release. Development. 2017;144(15):2771‐2783. 10.1242/dev.146647.28684627
( Silic MR , Wu Q , Kim BH , et al. Potassium channel‐associated bioelectricity of the dermomyotome determines fin patterning in zebrafish. Genetics. 2020;215:1084. 10.1534/genetics.120.303390.)
Silic MR , Wu Q , Kim BH , et al. Potassium channel‐associated bioelectricity of the dermomyotome determines fin patterning in zebrafish. Genetics. 2020;215:1084. 10.1534/genetics.120.303390.Silic MR , Wu Q , Kim BH , et al. Potassium channel‐associated bioelectricity of the dermomyotome determines fin patterning in zebrafish. Genetics. 2020;215:1084. 10.1534/genetics.120.303390., Silic MR , Wu Q , Kim BH , et al. Potassium channel‐associated bioelectricity of the dermomyotome determines fin patterning in zebrafish. Genetics. 2020;215:1084. 10.1534/genetics.120.303390.
Xi Huang, L. Jan (2014)
Targeting potassium channels in cancerThe Journal of Cell Biology, 206
Kevin Rohmann, Joel Tripp, Rachel Genova, A. Bass (2014)
Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafishJournal of Experimental Biology, 217
( Brunet FG , Crollius HR , Paris M , et al. Gene loss and evolutionary rates following whole‐genome duplication in teleost fishes. Mol Biol Evol. 2006;23(9):1808‐1816. 10.1093/molbev/msl049.16809621)
Brunet FG , Crollius HR , Paris M , et al. Gene loss and evolutionary rates following whole‐genome duplication in teleost fishes. Mol Biol Evol. 2006;23(9):1808‐1816. 10.1093/molbev/msl049.16809621Brunet FG , Crollius HR , Paris M , et al. Gene loss and evolutionary rates following whole‐genome duplication in teleost fishes. Mol Biol Evol. 2006;23(9):1808‐1816. 10.1093/molbev/msl049.16809621, Brunet FG , Crollius HR , Paris M , et al. Gene loss and evolutionary rates following whole‐genome duplication in teleost fishes. Mol Biol Evol. 2006;23(9):1808‐1816. 10.1093/molbev/msl049.16809621
J. Catchen, J. Conery, J. Postlethwait (2009)
Automated identification of conserved synteny after whole-genome duplication.Genome research, 19 8
G. Contreras, K. Castillo, N. Enrique, Willy Carrasquel-Ursulaez, J. Castillo, V. Milesi, A. Neely, O. Alvarez, G. Ferreira, Carlos Gonzalez, R. Latorre (2013)
A BK (Slo1) channel journey from molecule to physiologyChannels, 7
R. Albalat, C. Cañestro (2016)
Evolution by gene lossNature Reviews Genetics, 17
( Pasquier J , Cabau C , Nguyen T , et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17:368. 10.1186/s12864-016-2709-z.27189481)
Pasquier J , Cabau C , Nguyen T , et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17:368. 10.1186/s12864-016-2709-z.27189481Pasquier J , Cabau C , Nguyen T , et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17:368. 10.1186/s12864-016-2709-z.27189481, Pasquier J , Cabau C , Nguyen T , et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database. BMC Genomics. 2016;17:368. 10.1186/s12864-016-2709-z.27189481
( Amores A , Force A , Yan YL , et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711‐1714. 10.1126/science.282.5394.1711.9831563)
Amores A , Force A , Yan YL , et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711‐1714. 10.1126/science.282.5394.1711.9831563Amores A , Force A , Yan YL , et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711‐1714. 10.1126/science.282.5394.1711.9831563, Amores A , Force A , Yan YL , et al. Zebrafish hox clusters and vertebrate genome evolution. Science. 1998;282(5394):1711‐1714. 10.1126/science.282.5394.1711.9831563
Paramvir Dehal, J. Boore (2005)
Two Rounds of Whole Genome Duplication in the Ancestral VertebratePLoS Biology, 3
A. Amores, A. Force, Y. Yan, L. Joly, C. Amemiya, A. Fritz, R. Ho, J. Langeland, V. Prince, Y Wang, M. Westerfield, M. Ekker, J. Postlethwait (1998)
Zebrafish hox clusters and vertebrate genome evolution.Science, 282 5394
( Belus MT , Rogers MA , Elzubeir A , et al. Kir2.1 is important for efficient BMP signaling in mammalian face development. Dev Biol. 2018;444:S297‐S307. 10.1016/j.ydbio.2018.02.012.29571612)
Belus MT , Rogers MA , Elzubeir A , et al. Kir2.1 is important for efficient BMP signaling in mammalian face development. Dev Biol. 2018;444:S297‐S307. 10.1016/j.ydbio.2018.02.012.29571612Belus MT , Rogers MA , Elzubeir A , et al. Kir2.1 is important for efficient BMP signaling in mammalian face development. Dev Biol. 2018;444:S297‐S307. 10.1016/j.ydbio.2018.02.012.29571612, Belus MT , Rogers MA , Elzubeir A , et al. Kir2.1 is important for efficient BMP signaling in mammalian face development. Dev Biol. 2018;444:S297‐S307. 10.1016/j.ydbio.2018.02.012.29571612
K. Tamura, G. Stecher, D. Peterson, A. Filipski, Sudhir Kumar (2013)
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Molecular biology and evolution, 30 12
W. Moody (1998)
The development of voltage-gated ion channels and its relation to activity-dependent development events.Current topics in developmental biology, 39
M. Levin (2014)
Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivoMolecular Biology of the Cell, 25
J. Pereira, W. Johnson, S. O’Brien, S. O'Brien, E. Jarvis, Guojie Zhang, M. Gilbert, V. Vasconcelos, A. Antunes (2014)
Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in VertebratesPLoS ONE, 9
A. Kshatri, Alberto Gonzalez-Hernandez, T. Giraldez (2018)
Physiological Roles and Therapeutic Potential of Ca2+ Activated Potassium Channels in the Nervous SystemFrontiers in Molecular Neuroscience, 11
S. Feske, H. Wulff, E. Skolnik (2015)
Ion channels in innate and adaptive immunity.Annual review of immunology, 33
Monica Hensley, Rhys Chua, Yuk Leung, Jer-Yen Yang, Guangjun Zhang (2016)
Molecular Evolution of MDM1, a “Duplication-Resistant” Gene in VertebratesPLoS ONE, 11
E. Ohlstein, L. Kaczmarek, R. Aldrich, K. Chandy, S. Grissmer, A. Wei, H. Wulff (2017)
International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium ChannelsPharmacological Reviews, 69
( Force A , Lynch M , Pickett FB , Amores A , Yan YL , Postlethwait J . Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531‐1545.10101175)
Force A , Lynch M , Pickett FB , Amores A , Yan YL , Postlethwait J . Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531‐1545.10101175Force A , Lynch M , Pickett FB , Amores A , Yan YL , Postlethwait J . Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531‐1545.10101175, Force A , Lynch M , Pickett FB , Amores A , Yan YL , Postlethwait J . Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531‐1545.10101175
Dr. Ohno (1970)
Evolution by Gene Duplication
Thibault Lorin, F. Brunet, V. Laudet, J. Volff (2018)
Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in VertebratesG3: Genes|Genomes|Genetics, 8
( Woods IG , Kelly PD , Chu F , et al. A comparative map of the zebrafish genome. Genome Res. 2000;10(12):1903‐1914.11116086)
Woods IG , Kelly PD , Chu F , et al. A comparative map of the zebrafish genome. Genome Res. 2000;10(12):1903‐1914.11116086Woods IG , Kelly PD , Chu F , et al. A comparative map of the zebrafish genome. Genome Res. 2000;10(12):1903‐1914.11116086, Woods IG , Kelly PD , Chu F , et al. A comparative map of the zebrafish genome. Genome Res. 2000;10(12):1903‐1914.11116086
( Vergara C , Latorre R , Marrion NV , Adelman JP . Calcium‐activated potassium channels. Curr Opin Neurobiol. 1998;8(3):321‐329. 10.1016/s0959-4388(98)80056-1.9687354)
Vergara C , Latorre R , Marrion NV , Adelman JP . Calcium‐activated potassium channels. Curr Opin Neurobiol. 1998;8(3):321‐329. 10.1016/s0959-4388(98)80056-1.9687354Vergara C , Latorre R , Marrion NV , Adelman JP . Calcium‐activated potassium channels. Curr Opin Neurobiol. 1998;8(3):321‐329. 10.1016/s0959-4388(98)80056-1.9687354, Vergara C , Latorre R , Marrion NV , Adelman JP . Calcium‐activated potassium channels. Curr Opin Neurobiol. 1998;8(3):321‐329. 10.1016/s0959-4388(98)80056-1.9687354
( Kshatri AS , Gonzalez‐Hernandez A , Physiological Roles GT . Therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci. 2018;11:258. 10.3389/fnmol.2018.00258.30104956)
Kshatri AS , Gonzalez‐Hernandez A , Physiological Roles GT . Therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci. 2018;11:258. 10.3389/fnmol.2018.00258.30104956Kshatri AS , Gonzalez‐Hernandez A , Physiological Roles GT . Therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci. 2018;11:258. 10.3389/fnmol.2018.00258.30104956, Kshatri AS , Gonzalez‐Hernandez A , Physiological Roles GT . Therapeutic potential of Ca(2+) activated potassium channels in the nervous system. Front Mol Neurosci. 2018;11:258. 10.3389/fnmol.2018.00258.30104956
L. Salkoff, A. Butler, G. Ferreira, C. Santi, A. Wei (2006)
High-conductance potassium channels of the SLO familyNature Reviews Neuroscience, 7
A. Meyer, M. Schartl (1999)
Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions.Current opinion in cell biology, 11 6
( Postlethwait JH . The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol. 2007;308(5):563‐577. 10.1002/jez.b.21137.17068775)
Postlethwait JH . The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol. 2007;308(5):563‐577. 10.1002/jez.b.21137.17068775Postlethwait JH . The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol. 2007;308(5):563‐577. 10.1002/jez.b.21137.17068775, Postlethwait JH . The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol. 2007;308(5):563‐577. 10.1002/jez.b.21137.17068775
( Albalat R , Canestro C . Evolution by gene loss. Nat Rev Genet. 2016;17(7):379‐391. 10.1038/nrg.2016.39.27087500)
Albalat R , Canestro C . Evolution by gene loss. Nat Rev Genet. 2016;17(7):379‐391. 10.1038/nrg.2016.39.27087500Albalat R , Canestro C . Evolution by gene loss. Nat Rev Genet. 2016;17(7):379‐391. 10.1038/nrg.2016.39.27087500, Albalat R , Canestro C . Evolution by gene loss. Nat Rev Genet. 2016;17(7):379‐391. 10.1038/nrg.2016.39.27087500
(1908)
L-type voltagegated Ca(2+) channel CaV1.2 regulates chondrogenesis during 1492 SILIC ET AL. limb development
E. Bates (2015)
Ion channels in development and cancer.Annual review of cell and developmental biology, 31
Brandon Brown, Heesung Shim, P. Christophersen, H. Wulff (2020)
Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.Annual review of pharmacology and toxicology
( Bates E . Ion channels in development and cancer. Annu Rev Cell Dev Biol. 2015;31:231‐247. 10.1146/annurev-cellbio-100814-125338.26566112)
Bates E . Ion channels in development and cancer. Annu Rev Cell Dev Biol. 2015;31:231‐247. 10.1146/annurev-cellbio-100814-125338.26566112Bates E . Ion channels in development and cancer. Annu Rev Cell Dev Biol. 2015;31:231‐247. 10.1146/annurev-cellbio-100814-125338.26566112, Bates E . Ion channels in development and cancer. Annu Rev Cell Dev Biol. 2015;31:231‐247. 10.1146/annurev-cellbio-100814-125338.26566112
C. Kimmel, W. Ballard, S. Kimmel, B. Ullmann, T. Schilling (1995)
Stages of embryonic development of the zebrafishDevelopmental Dynamics, 203
Cátia Marques, I. Fernández, Michael Viegas, bullet Cymon, J. Cox, P. Martel, J. Rosa, bullet Cancela, V. Laizé (2015)
Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectivesCellular and Molecular Life Sciences, 73
( Levin M . Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell. 2014;25(24):3835‐3850. 10.1091/mbc.E13-12-0708.25425556)
Levin M . Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell. 2014;25(24):3835‐3850. 10.1091/mbc.E13-12-0708.25425556Levin M . Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell. 2014;25(24):3835‐3850. 10.1091/mbc.E13-12-0708.25425556, Levin M . Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell. 2014;25(24):3835‐3850. 10.1091/mbc.E13-12-0708.25425556
Casey McGrath, Jean-Francois Gout, Parul Johri, T. Doak, M. Lynch (2014)
Differential retention and divergent resolution of duplicate genes following whole-genome duplicationGenome Research, 24
( Moody WJ . The development of voltage‐gated ion channels and its relation to activity‐dependent development events. Curr Top Dev Biol. 1998;39:159‐185. 10.1016/s0070-2153(08)60455-x.9476000)
Moody WJ . The development of voltage‐gated ion channels and its relation to activity‐dependent development events. Curr Top Dev Biol. 1998;39:159‐185. 10.1016/s0070-2153(08)60455-x.9476000Moody WJ . The development of voltage‐gated ion channels and its relation to activity‐dependent development events. Curr Top Dev Biol. 1998;39:159‐185. 10.1016/s0070-2153(08)60455-x.9476000, Moody WJ . The development of voltage‐gated ion channels and its relation to activity‐dependent development events. Curr Top Dev Biol. 1998;39:159‐185. 10.1016/s0070-2153(08)60455-x.9476000
Matthew Belus, Madison Rogers, Alaaeddin Elzubeir, Megan Josey, Steven Rose, V. Andreeva, P. Yelick, E. Bates (2018)
Kir2.1 is important for efficient BMP signaling in mammalian face development.Developmental biology, 444 Suppl 1
Monica Hensley, Z. Cui, Rhys Chua, Stefanie Simpson, Nicole Shammas, Jer-Yen Yang, Yuk Leung, Guangjun Zhang (2016)
Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular developmentScientific Reports, 6
( Ishii TM , Silvia C , Hirschberg B , Bond CT , Adelman JP , Maylie J . A human intermediate conductance calcium‐activated potassium channel. Proc Natl Acad Sci U S A. 1997;94(21):11651‐11656. 10.1073/pnas.94.21.11651.9326665)
Ishii TM , Silvia C , Hirschberg B , Bond CT , Adelman JP , Maylie J . A human intermediate conductance calcium‐activated potassium channel. Proc Natl Acad Sci U S A. 1997;94(21):11651‐11656. 10.1073/pnas.94.21.11651.9326665Ishii TM , Silvia C , Hirschberg B , Bond CT , Adelman JP , Maylie J . A human intermediate conductance calcium‐activated potassium channel. Proc Natl Acad Sci U S A. 1997;94(21):11651‐11656. 10.1073/pnas.94.21.11651.9326665, Ishii TM , Silvia C , Hirschberg B , Bond CT , Adelman JP , Maylie J . A human intermediate conductance calcium‐activated potassium channel. Proc Natl Acad Sci U S A. 1997;94(21):11651‐11656. 10.1073/pnas.94.21.11651.9326665
( Van de Peer Y , Maere S , Meyer A . The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10(10):725‐732. 10.1038/nrg2600.19652647)
Van de Peer Y , Maere S , Meyer A . The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10(10):725‐732. 10.1038/nrg2600.19652647Van de Peer Y , Maere S , Meyer A . The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10(10):725‐732. 10.1038/nrg2600.19652647, Van de Peer Y , Maere S , Meyer A . The evolutionary significance of ancient genome duplications. Nat Rev Genet. 2009;10(10):725‐732. 10.1038/nrg2600.19652647
( Edgar RC . MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792‐1797. 10.1093/nar/gkh340.15034147)
Edgar RC . MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792‐1797. 10.1093/nar/gkh340.15034147Edgar RC . MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792‐1797. 10.1093/nar/gkh340.15034147, Edgar RC . MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792‐1797. 10.1093/nar/gkh340.15034147
Julien Ablain, Ellen Durand, Song Yang, Yi Zhou, L. Zon (2015)
A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.Developmental cell, 32 6
Martin Silic, Qiuyu Wu, Brian Kim, G. Golling, Kenny Chen, R. Freitas, Alexander Chubykin, S. Mittal, Guangjun Zhang (2020)
Potassium Channel-Associated Bioelectricity of the Dermomyotome Determines Fin Patterning in ZebrafishGenetics, 215
( Atsuta Y , Tomizawa RR , Levin M , Tabin CJ . L‐type voltage‐gated Ca(2+) channel CaV1.2 regulates chondrogenesis during limb development. Proc Natl Acad Sci U S A. 2019;116(43):21592‐21601. 10.1073/pnas.1908981116.31591237)
Atsuta Y , Tomizawa RR , Levin M , Tabin CJ . L‐type voltage‐gated Ca(2+) channel CaV1.2 regulates chondrogenesis during limb development. Proc Natl Acad Sci U S A. 2019;116(43):21592‐21601. 10.1073/pnas.1908981116.31591237Atsuta Y , Tomizawa RR , Levin M , Tabin CJ . L‐type voltage‐gated Ca(2+) channel CaV1.2 regulates chondrogenesis during limb development. Proc Natl Acad Sci U S A. 2019;116(43):21592‐21601. 10.1073/pnas.1908981116.31591237, Atsuta Y , Tomizawa RR , Levin M , Tabin CJ . L‐type voltage‐gated Ca(2+) channel CaV1.2 regulates chondrogenesis during limb development. Proc Natl Acad Sci U S A. 2019;116(43):21592‐21601. 10.1073/pnas.1908981116.31591237
M. Köhler, B. Hirschberg, C. Bond, J. Kinzie, N. Marrion, J. Maylie, J. Adelman (1996)
Small-Conductance, Calcium-Activated Potassium Channels from Mammalian BrainScience, 273
( Ohno S . Evolution by Gene Duplication. New York: Springer Science+Business Media, LLC; 1970.)
Ohno S . Evolution by Gene Duplication. New York: Springer Science+Business Media, LLC; 1970.Ohno S . Evolution by Gene Duplication. New York: Springer Science+Business Media, LLC; 1970., Ohno S . Evolution by Gene Duplication. New York: Springer Science+Business Media, LLC; 1970.
Cole Bailey, Hans Moldenhauer, S. Park, S. Keros, A. Meredith (2019)
KCNMA1-linked channelopathyThe Journal of General Physiology, 151
J Felsenstein (2004)
Inferring Phylogenies
(1908)
L-type voltagegated Ca(2+) channel CaV1.2 regulates chondrogenesis during 16 SILIC ET AL. limb development
( Brown BM , Shim H , Christophersen P , Wulff H . Pharmacology of small‐ and intermediate‐conductance calcium‐activated potassium channels. Annu Rev Pharmacol Toxicol. 2020;60:219‐240. 10.1146/annurev-pharmtox-010919-023420.31337271)
Brown BM , Shim H , Christophersen P , Wulff H . Pharmacology of small‐ and intermediate‐conductance calcium‐activated potassium channels. Annu Rev Pharmacol Toxicol. 2020;60:219‐240. 10.1146/annurev-pharmtox-010919-023420.31337271Brown BM , Shim H , Christophersen P , Wulff H . Pharmacology of small‐ and intermediate‐conductance calcium‐activated potassium channels. Annu Rev Pharmacol Toxicol. 2020;60:219‐240. 10.1146/annurev-pharmtox-010919-023420.31337271, Brown BM , Shim H , Christophersen P , Wulff H . Pharmacology of small‐ and intermediate‐conductance calcium‐activated potassium channels. Annu Rev Pharmacol Toxicol. 2020;60:219‐240. 10.1146/annurev-pharmtox-010919-023420.31337271
Developmental Dynamics – Wiley
Published: Oct 1, 2021
Keywords: calcium‐activated potassium ion channels
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.