Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Extended x-ray-absorption fine-structure (EXAFS) of copper has been measured from 4 to 500 K and analyzed by the cumulant method, to check the effectiveness of EXAFS as a probe of local dynamics and thermal expansion. The comparison between parallel mean square relative displacements (MSRD) of the first four coordination shells has allowed detecting a significant deviation from a pure Debye behavior. The first-shell EXAFS thermal expansion is larger than the crystallographic one: the difference has allowed evaluating the perpendicular MSRD, whose Debye temperature is slightly larger than the one of the parallel MSRD, due to anisotropy effects. High-order first-shell cumulants are in good agreement with quantum perturbative models. The anharmonic contribution to the first-shell parallel MSRD amounts to less than 1.5 percent. The third cumulant cannot be neglected in the analysis, if accurate values of the first cumulant are sought; it cannot however be used to directly estimate the thermal expansion. The shape of the effective pair potential is independent of temperature; a rigid shift, partially due to the relative motion perpendicular to the bond direction, is however observed.
Physical Review B – American Physical Society (APS)
Published: Nov 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.