Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Factors affecting the activation of rabbit muscle phosphofructokinase by actin.

Factors affecting the activation of rabbit muscle phosphofructokinase by actin. The consistent application of phosphatase inhibitors and a novel final purification step using a connected series of DE-51, DE-52, and DE-53 anion-exchange chromatography columns facilitate the preparation of electrophoretically homogeneous subpopulations of rabbit muscle phosphofructokinase which differ in their catalytic properties and endogenous covalent phosphate content. A band of "high"-phosphate enzyme (fraction II) flanked by regions of "low"-phosphate enzyme (fractions I and III) is an unusual feature of the final purification profile. Fractions I (containing in this case 0.42 mol of P/82 000 g of enzyme) and II (containing 1.26 mol of P/82 000 g of enzyme) exhibit the most pronounced functional differences of the fractions. Following our original report [Liou, R.-S., & Anderson, S. R. (1980) Biochemistry 19, 2684], both are activated by the addition of rabbit skeletal muscle F-actin. Under the assay conditions, half-maximal stimulation of phosphofructokinase activity occurs at 15.4 nM actin (in terms of monomer) for fraction I and 9.7 nM for fraction II. The low-phosphate enzyme is synergistically activated in the presence of 0.12 microM actin plus 3.0 microM fructose 2,6-bisphosphate, with a marked increase in Vmax, while the high-phosphate enzyme is not. Neither fraction is activated appreciably by the addition of G-actin or the chymotrypsin-resistant actin "core". The covalently cross-linked trimer of actin stimulates the activity of both the low- and high-phosphate enzyme fractions. However, the previously mentioned synergistic activation characteristic of fraction I fails to occur in solutions containing the trimer plus fructose 2,6-bisphosphate. Phosphorylation of fraction I in an in vitro reaction catalyzed by the cAMP-dependent protein kinase causes its properties to become more like those of fraction II. The total amount of covalent phosphate present after in vitro phosphorylation approaches 2 mol of P/82 000 g of enzyme for both fractions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemistry Pubmed

Factors affecting the activation of rabbit muscle phosphofructokinase by actin.

Biochemistry , Volume 25 (6): -1191 – Jun 12, 1986

Factors affecting the activation of rabbit muscle phosphofructokinase by actin.


Abstract

The consistent application of phosphatase inhibitors and a novel final purification step using a connected series of DE-51, DE-52, and DE-53 anion-exchange chromatography columns facilitate the preparation of electrophoretically homogeneous subpopulations of rabbit muscle phosphofructokinase which differ in their catalytic properties and endogenous covalent phosphate content. A band of "high"-phosphate enzyme (fraction II) flanked by regions of "low"-phosphate enzyme (fractions I and III) is an unusual feature of the final purification profile. Fractions I (containing in this case 0.42 mol of P/82 000 g of enzyme) and II (containing 1.26 mol of P/82 000 g of enzyme) exhibit the most pronounced functional differences of the fractions. Following our original report [Liou, R.-S., & Anderson, S. R. (1980) Biochemistry 19, 2684], both are activated by the addition of rabbit skeletal muscle F-actin. Under the assay conditions, half-maximal stimulation of phosphofructokinase activity occurs at 15.4 nM actin (in terms of monomer) for fraction I and 9.7 nM for fraction II. The low-phosphate enzyme is synergistically activated in the presence of 0.12 microM actin plus 3.0 microM fructose 2,6-bisphosphate, with a marked increase in Vmax, while the high-phosphate enzyme is not. Neither fraction is activated appreciably by the addition of G-actin or the chymotrypsin-resistant actin "core". The covalently cross-linked trimer of actin stimulates the activity of both the low- and high-phosphate enzyme fractions. However, the previously mentioned synergistic activation characteristic of fraction I fails to occur in solutions containing the trimer plus fructose 2,6-bisphosphate. Phosphorylation of fraction I in an in vitro reaction catalyzed by the cAMP-dependent protein kinase causes its properties to become more like those of fraction II. The total amount of covalent phosphate present after in vitro phosphorylation approaches 2 mol of P/82 000 g of enzyme for both fractions.

Loading next page...
 
/lp/pubmed/factors-affecting-the-activation-of-rabbit-muscle-phosphofructokinase-GdNcShXt97

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0006-2960
DOI
10.1021/bi00354a013
pmid
2938627

Abstract

The consistent application of phosphatase inhibitors and a novel final purification step using a connected series of DE-51, DE-52, and DE-53 anion-exchange chromatography columns facilitate the preparation of electrophoretically homogeneous subpopulations of rabbit muscle phosphofructokinase which differ in their catalytic properties and endogenous covalent phosphate content. A band of "high"-phosphate enzyme (fraction II) flanked by regions of "low"-phosphate enzyme (fractions I and III) is an unusual feature of the final purification profile. Fractions I (containing in this case 0.42 mol of P/82 000 g of enzyme) and II (containing 1.26 mol of P/82 000 g of enzyme) exhibit the most pronounced functional differences of the fractions. Following our original report [Liou, R.-S., & Anderson, S. R. (1980) Biochemistry 19, 2684], both are activated by the addition of rabbit skeletal muscle F-actin. Under the assay conditions, half-maximal stimulation of phosphofructokinase activity occurs at 15.4 nM actin (in terms of monomer) for fraction I and 9.7 nM for fraction II. The low-phosphate enzyme is synergistically activated in the presence of 0.12 microM actin plus 3.0 microM fructose 2,6-bisphosphate, with a marked increase in Vmax, while the high-phosphate enzyme is not. Neither fraction is activated appreciably by the addition of G-actin or the chymotrypsin-resistant actin "core". The covalently cross-linked trimer of actin stimulates the activity of both the low- and high-phosphate enzyme fractions. However, the previously mentioned synergistic activation characteristic of fraction I fails to occur in solutions containing the trimer plus fructose 2,6-bisphosphate. Phosphorylation of fraction I in an in vitro reaction catalyzed by the cAMP-dependent protein kinase causes its properties to become more like those of fraction II. The total amount of covalent phosphate present after in vitro phosphorylation approaches 2 mol of P/82 000 g of enzyme for both fractions.

Journal

BiochemistryPubmed

Published: Jun 12, 1986

There are no references for this article.