Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Ross, M. McInnis, R. Margolis, Shihua Li (1993)
Genes with triplet repeats: candidate mediators of neuropsychiatric disordersTrends in Neurosciences, 16
N. Wexler, A. Young, R. Tanzi, H. Travers, S. Starosta‐Rubinstein, J. Penney, S. Snodgrass, I. Shoulson, F. Gomez, M. Arroyo, G. Penchaszadeh, H. Moreno, K. Gibbons, A. Faryniarz, W. Hobbs, M. Anderson, E. Bonilla, P. Conneally, J. Gusella (1987)
Homozygotes for Huntington's diseaseNature, 326
R. Albin, D. Tagle (1995)
Genetics and molecular biology of Huntington's diseaseTrends in Neurosciences, 18
M. Duyao, C. Ambrose, R. Myers, A. Novelletto, F. Persichetti, M. Frontali, S. Folstein, C. Ross, M. Franz, M. Abbott, J. Gray, P. Conneally, A. Young, J. Penney, Z. Hollingsworth, I. Shoulson, A. Lazzarini, A. Falek, W. Koroshetz, D. Sax, E. Bird, J. Vonsattel, E. Bonilla, J. Alvir, J. Conde, J. Cha, L. Dure, F. Gomez, M. Ramos, J. Sanchez-Ramos, S. Snodgrass, M. Young, N. Wexler, C. Moscowitz, G. Penchaszadeh, H. Macfarlane, M. Anderson, B. Jenkins, J. Srinidhi, G. Barnes, J. Gusella, M. MacDonald (1993)
Trinucleotide repeat length instability and age of onset in Huntington's diseaseNature Genetics, 4
Shihua Li, M. McInnis, R. Margolis, S. Antonarakis, C. Ross (1993)
Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms.Genomics, 16 3
G. Schilling, A. Sharp, S. Loev, M. Wagster, S. Li, O. Stine, C. Ross (1995)
Expression of the Huntington's disease (IT15) protein product in HD patients.Human molecular genetics, 4 8
C. Canessa, J. Horisberger, B. Rossier (1993)
Epithelial sodium channel related to proteins involved in neurodegenerationNature, 361
C. Gutekunst, A. Levey, C. Heilman, W. Whaley, Hong Yi, N. Nash, H. Rees, J. Madden, S. Hersch (1995)
Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies.Proceedings of the National Academy of Sciences of the United States of America, 92 19
C. Ross (1995)
When more is less: Pathogenesis of glutamine repeat neurodegenerative diseasesNeuron, 15
Shihua Li, Gabriele Schilling, W. Young, Xiaohai Li, R. Margolis, O. Stine, M. Wagster, M. Abbott, M. Franz, R. Ng, S. Folstein, J. Hedreen, C. Ross (1993)
Huntington's disease gene (IT15) is widely expressed in human and rat tissuesNeuron, 11
F. Persichetti, C. Ambrose, P. Ge, S. McNeil, J. Srinidhi, M. Anderson, B. Jenkins, G. Barnes, M. Duyao, L. Kanaley, N. Wexler, R. Myers, E. Bird, J. Vonsattel, M. MacDonald, J. Gusella, S. Orkin (1995)
Normal and Expanded Huntington’s Disease Gene Alleles Produce Distinguishable Proteins Due to Translation Across the CAG RepeatMolecular Medicine, 1
T. Strong, D. Tagle, J. Valdes, L. Elmer, K. Boehm, M. Swaroop, K. Kaatz, F. Collins, R. Albin (1993)
Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissuesNature Genetics, 5
X. Li, S. Blackshaw, S. Snyder (1994)
Expression and localization of amiloride-sensitive sodium channel indicate a role for non-taste cells in taste perception.Proceedings of the National Academy of Sciences of the United States of America, 91
O. Stine, N. Pleasant, Franz Ml, Margaret Abbott, S. Folstein, Christopher Ross (1993)
Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15.Human molecular genetics, 2 10
C. Ambrose, M. Duyao, G. Barnes, G. Bates, Carol Lin, J. Srinidhi, S. Baxendale, H. Hummerich, H. Lehrach, M. Altherr, J. Wasmuth, A. Buckler, D. Church, D. Housman, M. Berks, G. Micklem, R. Durbin, A. Dodge, A. Read, J. Gusella, M. MacDonald (1994)
Structure and expression of the Huntington's disease gene: Evidence against simple inactivation due to an expanded CAG repeatSomatic Cell and Molecular Genetics, 20
M. Beal (1995)
Aging, energy, and oxidative stress in neurodegenerative diseasesAnnals of Neurology, 38
K. Guan, J. Dixon (1991)
Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase.Analytical biochemistry, 192 2
Y. Trottier, D. Devys, G. Imbert, F. Saudou, Isabelle An, Y. Lutz, C. Weber, Y. Agid, E. Hirsch, J. Mandel (1995)
Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated formNature Genetics, 10
Y. Trottier, Y. Lutz, G. Stevanin, G. Imbert, D. Devys, G. Cancel, F. Saudou, C. Weber, Gilles David, L. Tora, Y. Agid, A. Brice, J. Mandel (1995)
Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxiasNature, 378
S. Zeitlin, Jeh-Ping Liu, D. Chapman, V. Papaioannou, A. Efstratiadis (1995)
Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologueNature Genetics, 11
J. Nasir, S. Floresco, J. O'kusky, V. Diewert, Joy Richman, J. Zeisler, A. Borowski, J. Marth, A. Phillips, M. Hayden (1995)
Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotesCell, 81
M. Duyao, A. Auerbach, A. Ryan, F. Persichetti, G. Barnes, S. McNeil, P. Ge, J. Vonsattel, J. Gusella, A. Joyner (1995)
Inactivation of the mouse Huntington's disease gene homolog Hdh.Science, 269 5222
L. Guarente (1983)
Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast.Methods in enzymology, 101
S. Fields, R. Sternglanz (1994)
The two-hybrid system: an assay for protein-protein interactions.Trends in genetics : TIG, 10 8
M. MacDonald, C. Ambrose, M. Duyao, R. Myers, Carol Lin, L. Srinidhi, G. Barnes, Sherryl Taylor, M. James, Nicolet Groot, Heather MacFarlane, B. Jenkins, M. Anderson, N. Wexler, J. Gusella, G. Bates, S. Baxendale, H. Hummerich, S. Kirby, M. North, S. Youngman, R. Mott, G. Zehetner, Z. Sedlacek, A. Poustka, A. Frischauf, H. Lehrach, A. Buckler, D. Church, L. Doucette-Stamm, M. O’Donovan, Laura Riba-Ramírez, Manish Shah, V. Stanton, S. Strobel, K. Draths, Jennifer Wales, P. Dervan, D. Housman, M. Altherr, R. Shiang, L. Thompson, T. Fielder, J. Wasmuth, D. Tagle, J. Valdes, Lon Elmer, M. Allard, L. Castilla, M. Swaroop, K. Blanchard, F. Collins, R. Snell, T. Holloway, Kathleen Gillespie, N. Datson, D. Shaw, P. Harper (1993)
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomesCell, 72
A. Sharp, S. Loev, Gabriele Schilling, Shihua Li, Xiao-Jiang Li, J. Bao, M. Wagster, J. Kotzuk, J. Steiner, A. Lo, J. Hedreen, S. Sisodia, S. Snyder, T. Dawson, D. Ryugo, C. Ross (1995)
Widespread expression of Huntington's disease gene (IT15) protein productNeuron, 14
M. Difiglia, E. Sapp, K. Chase, Cordula Schwarz, A. Meloni, C. Young, E. Martin, J. Vonsattel, R. Carraway, S. Reeves, F. Boyce, N. Aronin (1995)
Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neuronsNeuron, 14
S. Andrew, Y. Goldberg, B. Kremer, H. Telenius, J. Theilmann, S. Adam, E. Starr, F. Squitieri, B. Lin, M. Kalchman, R. Graham, M. Hayden (1993)
The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's diseaseNature Genetics, 4
P. Chevray, D. Nathans (1992)
Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun.Proceedings of the National Academy of Sciences of the United States of America, 89 13
HUNTINGTON's disease (HD) is an autosomal dominant neuro-degenerative disorder caused by an expanding polyglutamine repeat in the IT 15 or huntingtin gene1. Although this gene is widely expressed2–9 and is required for normal development10–12, the pathology of HD is restricted to the brain, for reasons that remain poorly understood. The huntingtin gene product is expressed at similar levels in patients and controls, and the genetics of the disorder13,14 suggest that the expansion of the polyglutamine repeat induces a toxic gain of function, perhaps through interactions with other cellular proteins15–18. Here we report the identification of a protein (huntingtin-associated protein (HAP)-l) that binds to huntingtin. This binding is enhanced by an expanded polyglutamine repeat, the length of which is also known to correlate with the age of disease onset19–21. The HAP-1 protein is enriched in the brain, suggesting a possible basis for the selective brain pathology of HD.
Nature – Springer Journals
Published: Nov 23, 1995
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.